Vol. 170
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-05-13
Directional Polaritonic Excitation of Circular, Huygens and Janus Dipoles in Graphene-Hexagonal Boron Nitride Heterostructures
By
Progress In Electromagnetics Research, Vol. 170, 169-176, 2021
Abstract
Polariton assisted tunable directionality provides an intrinsic ingredient to various micro/nano integrated optical systems. Their capabilities of light manipulation in mesoscopic structures allow numerous beneficial properties in information processing. The realization of active near-field directionality by tuning the input signal of system bias is more preferable than that by reconfiguring the nanostructures. Recent progresses on the multiple hybrid dipole radiations ensure another methodology in realizing tunable directionality. Here we investigate some exotic near-field phenomena in a 5-layer waveguide consisted of graphene and hexagonal boron nitride (hBN) illuminated by hybrid dipole sources such as a Circular dipole, a Huygens dipole or a Janus dipole. We demonstrate divergent behaviors of hybrid polariton excitations subject to various source types and the tunability of switching between phonon-like polaritons and plasmon-like polaritons. We also show that the flipping of the group velocity of excited hybrid polaritons can be used to flexibly tune the transportation direction away from the dipolar sources. To be specific, when the group velocity of supported polariton flips its sign, the energy flow will shift to the opposite side accordingly. Such phenomena are promising in the design of reconfigurable and multifunctional nanophotonic devices.
Citation
Yuyu Jiang, Xiao Lin, and Hongsheng Chen, "Directional Polaritonic Excitation of Circular, Huygens and Janus Dipoles in Graphene-Hexagonal Boron Nitride Heterostructures," Progress In Electromagnetics Research, Vol. 170, 169-176, 2021.
doi:10.2528/PIER21050101
References

1. Ma, W., et al. "In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal," Nature, Vol. 562, 557, 2018.
doi:10.1038/s41586-018-0618-9

2. Chervy, T., et al. "Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons," ACS Photonics, Vol. 5, 1287, 2018.

3. Gururanayanan, S., et al. "Electrically driven unidirectional optical nanoantennas," Nano Letters, Vol. 17, 7433, 2017.
doi:10.1021/acs.nanolett.7b03312

4. Divinskiy, B., et al. "Excitation and amplification of spin waves by spin-orbit torque," Advanced Materials, Vol. 30, 1802837, 2018.
doi:10.1002/adma.201802837

5. Sinev, I., et al. "Chirality driven by magnetic dipole response for demultiplexing of surface waves," Laser & Photonics Reviews, Vol. 11, 1700168, 2017.
doi:10.1002/lpor.201700168

6. Wang, M., et al. "Magnetic spin-orbit interaction of light," Light: Science & Applications, Vol. 7, 24, 2018.
doi:10.1038/s41377-018-0018-9

7. Li, P., et al. "Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials," Nano Letters, Vol. 17, 228, 2017.
doi:10.1021/acs.nanolett.6b03920

8. Li, Y., et al. "Orientation-dependent exciton-plasmon coupling in embedded organic/metal nanowire heterostructures," ACS Nano, Vol. 11, 10106, 2017.
doi:10.1021/acsnano.7b04584

9. Sinev, I., et al. "Steering of guided light with dielectric nanoantennas," ACS Photonics, Vol. 7, 680, 2020.
doi:10.1021/acsphotonics.9b01515

10. Liu, F., et al. "Surface-plasmon-polariton diode by asymmetric plano-concave nanocavities," Advanced Optical Materials, Vol. 6, 1701226, 2018.
doi:10.1002/adom.201701226

11. Cao, S., et al. "Directional light beams by design from electrically driven elliptical slit antennas," Beilstein Journal of Nanotechnology, Vol. 9, 2361, 2018.
doi:10.3762/bjnano.9.221

12. Stauber, T., et al. "Unidirectional plasmonic edge modes on general two-dimensional materials," 2D Materials, Vol. 6, 045023, 2019.
doi:10.1088/2053-1583/ab2f05

13. Atabaki, A., et al. "Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, Vol. 556, 349, 2018.
doi:10.1038/s41586-018-0028-z

14. Miri, M., et al. "Exceptional points in optics and photonics," Science, Vol. 363, 42, 2019.
doi:10.1126/science.aar7709

15. Cheben, P., et al. "Subwavelength integrated photonics," Nature, Vol. 560, 565, 2018.
doi:10.1038/s41586-018-0421-7

16. Sengupta, K., et al. "Terahertz integrated electronic and hybrid electronic-photonic systems," Nature Electronics, Vol. 1, 622, 2018.
doi:10.1038/s41928-018-0173-2

17. West, P., et al. "Searching for better plasmonic materials," Laser & Photonics Reviews, Vol. 4, 795, 2010.
doi:10.1002/lpor.200900055

18. Ni, G., et al. "Fundamental limits to graphene plasmonics," Nature, Vol. 557, 530, 2018.
doi:10.1038/s41586-018-0136-9

19. Gangaraj, S., et al. "Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms," Physical Review B, Vol. 99, 245414, 2019.
doi:10.1103/PhysRevB.99.245414

20. Picardi, M., et al. "Experimental demonstration of linear and spinning Janus dipoles for polarisation- and wavelength-selective near-field coupling," Light: Science & Applications, Vol. 8, 52, 2019.
doi:10.1038/s41377-019-0162-x

21. Kapitanova, P., et al. "Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes," Nature Communications, Vol. 5, 3226, 2014.
doi:10.1038/ncomms4226

22. Ferrari, L., et al. "Hyperbolic metamaterials for dispersion-assisted directional light emission," Nanoscale, Vol. 9, 9034, 2017.
doi:10.1039/C7NR00980A

23. Yermakov, O., et al. "Spin control of light with hyperbolic metasurfaces," Physical Review B, Vol. 94, 075446, 2016.
doi:10.1103/PhysRevB.94.075446

24. Picardi, M., et al. "Janus and Huygens dipoles: Near-field directionality beyond spin-momentum locking," Physical Review Letters, Vol. 120, 117402, 2018.
doi:10.1103/PhysRevLett.120.117402

25. Zhong, Y., et al., "Toggling near-field directionality via polarization control of surface waves," Laser & Photonics Reviews, Vol. 15, 2000388, 2021.
doi:10.1002/lpor.202000388

26. Wigner, E., et al. "Ueber die Erhaltungss¨atze in der Quantenmechanik," Mathematisch-Physikalische Klasse, Vol. IIa, 375, 1927.

27. Jiang, Y., et al. "Group-velocity-controlled and gate-tunable directional excitation of Polaritons in graphene-boron nitride heterostructures," Laser & Photonics Reviews, Vol. 12, 1800049, 2018.
doi:10.1002/lpor.201800049

28. Woessner, A., et al., "Highly confined low-loss plasmons in graphene-boron nitride heterostruc-tures," Nature Materials, Vol. 14, 421, 2015.
doi:10.1038/nmat4169

29. Shuang, K., et al., "Dielectric function and plasmon structure of stage-1 intercalated graphite," Physical Review B, Vol. 34, 979, 1986.
doi:10.1103/PhysRevB.34.979

30. Chew, W., Waves and Fields in Inhomogeneous Media, Ch. 2, Wiley-IEEE Press, 1995.