1. Ma, W., et al. "In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal," Nature, Vol. 562, 557, 2018.
doi:10.1038/s41586-018-0618-9
2. Chervy, T., et al. "Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons," ACS Photonics, Vol. 5, 1287, 2018.
3. Gururanayanan, S., et al. "Electrically driven unidirectional optical nanoantennas," Nano Letters, Vol. 17, 7433, 2017.
doi:10.1021/acs.nanolett.7b03312
4. Divinskiy, B., et al. "Excitation and amplification of spin waves by spin-orbit torque," Advanced Materials, Vol. 30, 1802837, 2018.
doi:10.1002/adma.201802837
5. Sinev, I., et al. "Chirality driven by magnetic dipole response for demultiplexing of surface waves," Laser & Photonics Reviews, Vol. 11, 1700168, 2017.
doi:10.1002/lpor.201700168
6. Wang, M., et al. "Magnetic spin-orbit interaction of light," Light: Science & Applications, Vol. 7, 24, 2018.
doi:10.1038/s41377-018-0018-9
7. Li, P., et al. "Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials," Nano Letters, Vol. 17, 228, 2017.
doi:10.1021/acs.nanolett.6b03920
8. Li, Y., et al. "Orientation-dependent exciton-plasmon coupling in embedded organic/metal nanowire heterostructures," ACS Nano, Vol. 11, 10106, 2017.
doi:10.1021/acsnano.7b04584
9. Sinev, I., et al. "Steering of guided light with dielectric nanoantennas," ACS Photonics, Vol. 7, 680, 2020.
doi:10.1021/acsphotonics.9b01515
10. Liu, F., et al. "Surface-plasmon-polariton diode by asymmetric plano-concave nanocavities," Advanced Optical Materials, Vol. 6, 1701226, 2018.
doi:10.1002/adom.201701226
11. Cao, S., et al. "Directional light beams by design from electrically driven elliptical slit antennas," Beilstein Journal of Nanotechnology, Vol. 9, 2361, 2018.
doi:10.3762/bjnano.9.221
12. Stauber, T., et al. "Unidirectional plasmonic edge modes on general two-dimensional materials," 2D Materials, Vol. 6, 045023, 2019.
doi:10.1088/2053-1583/ab2f05
13. Atabaki, A., et al. "Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, Vol. 556, 349, 2018.
doi:10.1038/s41586-018-0028-z
14. Miri, M., et al. "Exceptional points in optics and photonics," Science, Vol. 363, 42, 2019.
doi:10.1126/science.aar7709
15. Cheben, P., et al. "Subwavelength integrated photonics," Nature, Vol. 560, 565, 2018.
doi:10.1038/s41586-018-0421-7
16. Sengupta, K., et al. "Terahertz integrated electronic and hybrid electronic-photonic systems," Nature Electronics, Vol. 1, 622, 2018.
doi:10.1038/s41928-018-0173-2
17. West, P., et al. "Searching for better plasmonic materials," Laser & Photonics Reviews, Vol. 4, 795, 2010.
doi:10.1002/lpor.200900055
18. Ni, G., et al. "Fundamental limits to graphene plasmonics," Nature, Vol. 557, 530, 2018.
doi:10.1038/s41586-018-0136-9
19. Gangaraj, S., et al. "Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms," Physical Review B, Vol. 99, 245414, 2019.
doi:10.1103/PhysRevB.99.245414
20. Picardi, M., et al. "Experimental demonstration of linear and spinning Janus dipoles for polarisation- and wavelength-selective near-field coupling," Light: Science & Applications, Vol. 8, 52, 2019.
doi:10.1038/s41377-019-0162-x
21. Kapitanova, P., et al. "Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes," Nature Communications, Vol. 5, 3226, 2014.
doi:10.1038/ncomms4226
22. Ferrari, L., et al. "Hyperbolic metamaterials for dispersion-assisted directional light emission," Nanoscale, Vol. 9, 9034, 2017.
doi:10.1039/C7NR00980A
23. Yermakov, O., et al. "Spin control of light with hyperbolic metasurfaces," Physical Review B, Vol. 94, 075446, 2016.
doi:10.1103/PhysRevB.94.075446
24. Picardi, M., et al. "Janus and Huygens dipoles: Near-field directionality beyond spin-momentum locking," Physical Review Letters, Vol. 120, 117402, 2018.
doi:10.1103/PhysRevLett.120.117402
25. Zhong, Y., et al., "Toggling near-field directionality via polarization control of surface waves," Laser & Photonics Reviews, Vol. 15, 2000388, 2021.
doi:10.1002/lpor.202000388
26. Wigner, E., et al. "Ueber die Erhaltungss¨atze in der Quantenmechanik," Mathematisch-Physikalische Klasse, Vol. IIa, 375, 1927.
27. Jiang, Y., et al. "Group-velocity-controlled and gate-tunable directional excitation of Polaritons in graphene-boron nitride heterostructures," Laser & Photonics Reviews, Vol. 12, 1800049, 2018.
doi:10.1002/lpor.201800049
28. Woessner, A., et al., "Highly confined low-loss plasmons in graphene-boron nitride heterostruc-tures," Nature Materials, Vol. 14, 421, 2015.
doi:10.1038/nmat4169
29. Shuang, K., et al., "Dielectric function and plasmon structure of stage-1 intercalated graphite," Physical Review B, Vol. 34, 979, 1986.
doi:10.1103/PhysRevB.34.979
30. Chew, W., Waves and Fields in Inhomogeneous Media, Ch. 2, Wiley-IEEE Press, 1995.