Vol. 102
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-05-01
Feedforward Decoupling Control of Interior Permanent Magnet Synchronous Motor with Genetic Algorithm Parameter Identification
By
Progress In Electromagnetics Research M, Vol. 102, 117-126, 2021
Abstract
The goal of vector control of interior permanent magnet synchronous motor (IPMSM) is to make IPMSM have excellent dynamic and steady-state performance, but there is coupling between the d-q axis in the synchronous rotating coordinate system, which affects the torque response performance. In view of the fact that the traditional voltage compensation strategy is sensitive to the change of motor parameters, genetic algorithm is introduced to identify the parameters, and a feedforward voltage compensation control based on genetic algorithm parameter identification is proposed. The compensation voltage is calculated by the inductance and flux value of the motor identified by genetic algorithm. Compensation voltage is used to counteract the change of feedback voltage caused by the change of motor parameters in feedforward decoupling control. Simulated and experimental results show that the proposed strategy can effectively achieve d-q axis current decoupling, improve the dynamic performance of the system, and have excellent robustness.
Citation
Yanfei Pan, Xin Liu, Yilin Zhu, Bo Liu, and Zhongshu Li, "Feedforward Decoupling Control of Interior Permanent Magnet Synchronous Motor with Genetic Algorithm Parameter Identification," Progress In Electromagnetics Research M, Vol. 102, 117-126, 2021.
doi:10.2528/PIERM21032903
References

1. Han, Z.-X. and J.-L. Liu, "Comparative analysis of vibration and noise in IPMSM considering the effect of MTPA control algorithms for electric vehicles," IEEE Transactions on Power Electronics, Vol. 36, No. 6, 6850-6862, 2021.
doi:10.1109/TPEL.2020.3036402

2. Murakami, M., S. Morimoto, Y. Inoue, et al. "Maximum torque per ampere control of an IPMSM with magnetic saturation using online parameter identification," Proceedings of 2020 23rd International Conference on Electrical Machines and Systems, 1631-1636, Hamamatsu, Japan, 2020.
doi:10.23919/ICEMS50442.2020.9290907

3. Fang, J.-C., Y.-Z. He, and Z.-Y. Wang, "Decoupling control strategy for high speed permanent magnet synchronous motor based on inversion system method," 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications, 895-898, Ottawa, Canada, 2014.

4. Guo, J., T. Fan, Q. Li, and e al., "Coupling and digital control delays affected stability analysis of permanent magnet synchronous motor current loop control," Vehicle Power and Propulsion Conference, 1-5, 2019.

5. Ban, F., G. Gu, and G. Lian, "Research on decoupling model predictive torque control strategy with load feedforward compensation for PMSM," 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devicesbuzai, 1-2, Tianjin, China, 2020.

6. Xiong, T., G. Zhou, and D.-D. Zou, "State feedback decoupling control of web tension velocity and lateral displacement in unwinding system," Chinese Control and Decision Conference, 5217-5224, 2020.

7. Chen, S.-Z., J.-F. Jiang, X.-H. Hou, et al. "Feedback linearized sliding mode control of PMSM based on a novel reaching law," Electrical Machines and Systems International Conference, 1438-1441, 2020.

8. Thieli, S. G., H. A. Grundling, and R. P. Vieira, "Sliding mode current control based on disturbance observer applied to permanent magnet synchronous motor," Proceedings of 1st Southern Power Electronics Conference, 1-6, Fortaleza, Brazil, 2015.

9. Scalcon, F. P., T. S. Gabbi, R. P. Vieira, et al. "Decoupled vector control based on disturbance observer applied to the synchronous reluctance motor," Proceedings of 21st European Conference on Power Electronics and Applications, P.1-P.8, Genova, Italy, 2019.

10. Gan, X.-Y., C. Liu, Y. Zuo, et al. "Analysis and dynamic decoupling control schemes for PMSM current loop," IEEE International Conference on Aircraft Utility Systems, 570-574, Beijing, China, 2016.

11. Lee, K. and J. Ha, "Dynamic decoupling control method for PMSM drive with cross-coupling inductances," IEEE Applied Power Electronics Conference and Exposition, 563-569, Tampa, FL, USA, 2017.

12. Jie, H., G. Zheng, J. Zou, et al. "Adaptive decoupling control using radial basis function neural network for permanent magnet synchronous motor considering uncertain and time-varying parameters," IEEE Access, Vol. 8, 112323-112332, 2020.
doi:10.1109/ACCESS.2020.2993648

13. Calvini, M., M. Carpita, A. Formentini, et al. "PSO-based self-commissioning of electrical motor drives," IEEE Transactions on Industrial Electronics, Vol. 62, No. 2, 768-776, 2015.
doi:10.1109/TIE.2014.2349478

14. Liu, Z., H.-L. Wei, Q.-C. Zhong, et al. "Parameter estimation for VSI-Fed PMSM based on a dynamic PSO with learning strategies," IEEE Transactions on Power Electronics, Vol. 32, No. 4, 3154-3165, 2017.
doi:10.1109/TPEL.2016.2572186

15. Avdeev, A. and O. Osipov, "PMSM identification using genetic algorithm," International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives, 1-4, Moscow, Russia, 2019.

16. Song, Z., Y. Lin, X. Mei, et al. "A novel inertia identification method for servo system using genetic algorithm," International Conference on Smart Grid and Electrical Automation, 22-25, Zhangjiajie, China, 2016.