1. American Diabetes Association "Diagnosis and classification of diabetes mellitus," Diabetes Care, Vol. 37, S81-S90, 2014.
2. Tan, S. Y., J. L. M. Wong, Y. J. Sim, et al. "Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention," Diabetes & Metabolic Syndrome: Clinical Research & Reviews, Vol. 13, No. 1, 364-372, 2019.
3. Wild, S., G. Roglic, A. Green, et al. "Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030," Diabetes Care, Vol. 27, 1047-1053, 2004.
4. Yilmaz, T., R. Foster, and Y. Hao, "Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels," Diagnostics, Vol. 9, 1-6, 2019.
5. Tura, A., A. Maran, and G. Pacini, "Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria," Diabetes Research and Clinical Practice, Vol. 77, No. 1, 16-40, 2007.
6. Gonzales, W. V., A. T. Mobashsher, and A. Abbosh, "The progress of glucose monitoring — A review of invasive to minimally and non-invasive techniques, devices and sensors," Sensors, Vol. 4, 15-19, 2019.
7. Caduff, A., M. Zanon, P. Zakharov, et al. "First experiences with a wearable multisensor in an outpatient glucose monitoring study, Part I: The users’ view," Journal of Diabetes Science and Technology, Vol. 12, 562-568, 2018.
8. Zanon, M., M. Mueller, P. Zakharov, et al. "First experiences with a wearable multisensor device in a noninvasive continuous glucose monitoring study at home, Part II: The investigators’ view," Journal of Diabetes Science and Technology, Vol. 12, No. 3, 554-561, 2018.
9. Caduff, A., M. S. Talary, M. Mueller, F. Dewarrat, J. Klisic, M. Donath, L. Heinemann, and W. A. Stahel, "Non-invasive glucose monitoring in patients with Type 1 diabetes: A multisensor system combining sensors for dielectric and optical characterisation of skin," Biosens Bioelectron, Vol. 24, No. 9, 2778-84, May 15, 2009.
10. Choi, H., S. Luzio, J. Beutler, et al. "Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results," IEEE MTT-S International Microwave Symposium (IMS), 876-879, 2017.
11. Choi, H., J. Naylon, S. Luzio, et al. "Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 10, 3016-3025, 2015.
12. Hanna, J., M. Bteich, Y. Tawk, et al. "Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy," Science Advances, Vol. 6, No. 24, eaba5320, 2020.
13. Baghelani, M., Z. Abbasi, M. Daneshmand, et al. "Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators," Sci. Rep., Vol. 10, 12980, 2020.
14. Omer, A. E., G. Shaker, S. Safavi-Naeini, et al. "Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration," Sci. Rep., Vol. 10, 15200, 2020.
15. Zapasnoy, A. S., V. P. Belichenko, V. P. Yakubov, et al. "Application of broadband microwave near-field sensors for glucose monitoring in biological media," Appl. Sci., Vol. 11, No. 4, 1470, 2021.
16. Weinzimer, S. A., "PENDRA: The once and future noninvasive continuous glucose monitoring device," Diabetes Technology & Therapeutics, Vol. 6, No. 4, 442-444, 2004.
17. Wentholt, I. M. E., J. B. L. Hoekstra, A. Zwart, et al. "Pendra goes Dutch: Lessons for the CE mark in Europe," Diabetologia, Vol. 48, 1055-1058, 2005.
18. Tierney, M. J., A. T. Janet, O. P. Russell, et al. "The GlucoWatchR biographer: A frequent automatic and noninvasive glucose monitor," Annals of Medicine, Vol. 32, 632-641, 2000.
19. Gandrud, L. M., H. U. Paguntalan, M. M. Van Wyhe, et al. "Use of the Cygnus GlucoWatch biographer at a diabetes camp," Pediatrics, Vol. 113, 108-111, 2004.
20. Diabetes Research in Children Network (DirecNet) Study Group "Accuracy of the GlucoWatch G2 Biographer and the continuous glucose monitoring system during hypoglycemia: Experience of the diabetes research in children network," Diabetes Care, Vol. 27, No. 3, 722-726, 2004.
21. Pf¨utzner, A., S. Strobl, D. Sachsenheimer, et al. "Evaluation of the non-invasive glucose monitoring device GlucoTrackR in patients with Type 2 diabetes and subjects with prediabetes," J. Diabetes Treat., Vol. 4, No. 02, 2019.
22. Bahartan, K., K. Horman, A. Gal, et al. "Assessing the performance of a noninvasive glucose monitor in people with Type 2 diabetes with different demographic profiles," Journal of Diabetes Research, 1-8, 2017.
23. Christiansen, M. P., L. J. Klaff, R. Brazg, et al. "A prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISE II," Diabetes Technology & Therapeutics, Vol. 20, No. 3, 197, 2018.
24. Deiss, D., A. Szadkowska, D. Gordon, et al. "Clinical practice recommendations on the routine use of eversense, the first long-term implantable continuous glucose monitoring system," Diabetes Technology & Therapeutics, Vol. 21, No. 5, 254-264, 2019.
25. Oppel, E., S. Kamann, L. Heinemann, et al. "The implanted glucose monitoring system eversense: An alternative for diabetes patients with isobornyl acrylate allergy," Contact Dermatitis, Vol. 82, No. 2, 101-104, 2019.
26. Saha, S., H. Cano-Garcia, I. Sotiriou, et al. "A glucose sensing system based on transmission measurements at millimetre waves using microstrip patch antennas," Sci. Rep., Vol. 7, No. 1, 6855, 2017.
27. Gouzouasis, I., H. Cano-Garcia, I. Sotiriou, et al. "Detection of varying glucose concentrations in water solutions using a prototype biomedical device for millimeter-wave non-invasive glucose sensing," EuCAP, 2016.
28. The Free Style Libre System, , , https://www.freestylelibre.fr/libre/..
29. Fokkert, M. J., P. R. Van Dijk, M. A. Edens, et al. "Performance of the FreeStyle Libre Flash glucose monitoring system in patients with Type 1 and 2 diabetes mellitus," BMJ Open Diabetes Research and Care, Vol. 5, No. 1, e000320, 2017.
30. Badugu, R., E. A. Reece, and J. R. Lakowicz, "Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring," J. Biomed. Opt., Vol. 23, No. 5, 1-9, 2018.
31. Park, J., J. Kim, S. Y. Kim, et al. "Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays," Science Advances, Vol. 4, No. 1, eaap9841, 2018.
32. Zhang, J. and W. G. Hodge, "Contact lens integrated with a biosensor for the detection of glucose and other components in tears,", U.S. Patent US8385998B2, 2009.
33. Zhang, W., Y. Du, and M. L. Wang, "Noninvasive glucose monitoring using saliva nano-biosensor," Sensing and Bio-Sensing Research, Vol. 4, 23-29, 2015.
34. Zhao, J., Y. Lin, J. Wu, et al. "A fully integrated and self-Powered smartwatch for continuous sweat glucose monitoring," American Chemical Society, Vol. 4, No. 7, 1925-1933, 2019.
35. Lee, H., C. Song, Y. S. Hong, et al. "Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module," Science Advances, Vol. 3, No. 3, e1601314, 2017.
36. Kuwahara, Y., "Microwave imaging for early breast cancer detection," New Perspectives in Breast Imaging, IntechOpen, 2017.
37. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, 78-94, 2011.
38. Wang, Z., et al. "Medical applications of microwave imaging," The Scientific World Journal, Vol. 2014, Article ID 147016, 2014.
39. Misilmani, H. M. E., T. Naous, A. S. K. Khatib, et al. "A survey on antenna designs for breast cancer detection using microwave imaging," IEEE Access, Vol. 8, 102570-102594, 2020.
40. Klemm, M., J. A. Leendertz, D. Gibbins, et al. "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1349-1352, 2009.
41. Dichtl, C., et al. "Dielectric properties of 3D printed polylactic acid," Advances in Materials Science and Engineering, 1-10, 2017.
42. Mini-Circuits Datasheet, https://www.minicircuits.com/pdfs/ZTVX-n-12 Series.pdf..
43. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissue II: Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
44. The Foundation for Research on Information Technologies in Society (IT’IS) "Dielectric proper-ties of human tissues,", https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties.
45. Lazebnik, M., E. L. Madsen, G. R. Frank, et al. "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, No. 18, 4245-4258, 2005.
46. Yilmaz, T., T. Karacolak, and E. Topsakalet, "Characterization of muscle and fat mimicking gels at MICS and ISM bands (402 MHz 405 MHz) and (2.40–2.48 GHz)," XXIX General Assembly of the International Union of Radio Science, 2008.
47. Mashal, A. and F. Gao, "Hagness SC: Heterogeneous anthropomorphic phantoms with realistic dielectric properties for microwave breast imaging experiments," Microw. Opt. Technol. Lett., Vol. 53, No. 8, 1896-1902, 2011.
48. Antunes Neves AL "Application au domaine biom´edical des moyens de caract´erisation ´electromagn´etique de mat´eriaux dans le spectre des micro-ondes,", Thesis, 2017.
49. Microwave Vision Group "Microwave Vision Group,", https://www.mvg-world.com/fr/products/sar/sar-accessories/liquids.
50. Electromagnetic measuring device EpsiMuR, https://www.epsimu.com.