1. Zhang, Z., X. Cao, and L. Sijia, "Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators," Radioengineering, Vol. 25, No. 3, 436-441, 2016.
doi:10.13164/re.2016.0436
2. Zheng, Q., C. Guo, P. Yuan, Y.-H. Ren, and J. Ding, "Wideband and high-efficiency reflective polarization conversion metasurface based on anisotropic metamaterials," J. Electron. Mater., Vol. 47, No. 5, 2658-2666, 2018.
doi:10.1007/s11664-018-6113-0
3. Beruete, M., M. Navarro-Cıa, M. Sorolla, and I. Campillo, "Polarization selection with stacked hole array metamaterial," J. Appl. Phys., Vol. 103, No. 5, 1-5, 2008.
doi:10.1063/1.2841471
4. Xu, P., S.-Y. Wang, and W. Geyi, "A linear polarization converter with near unity efficiency in microwave regime," J. Appl. Phys., Vol. 121, 144502, 2017.
doi:10.1063/1.4979880
5. Pfeiffer, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 12, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173
6. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Opt., Vol. 136, No. 3, 52-57, 2017.
7. Zheng, Q., C. Guo, G. A. E. Vandenbosch, P. Yuan, and J. Ding, "Dual-broadband highly efficient reflective multi-polarisation converter based on multi-order plasmon resonant metasurface," IET Microwaves, Antennas Propag., Vol. 14, No. 9, 967-972, 2020.
doi:10.1049/iet-map.2019.0984
8. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 8, 1459-1463, 2018.
doi:10.1109/LAWP.2018.2849352
9. Grady, N. K., et al. "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399
10. Pan, W., Q. Chen, Y. Ma, X. Wang, and X. Ren, "Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement," Opt. Commun., Vol. 459, 124901, 2020.
doi:10.1016/j.optcom.2019.124901
11. Ma, X., et al. "An active metamaterial for polarization manipulating," Adv. Opt. Mater., Vol. 2, No. 10, 945-949, 2014.
doi:10.1002/adom.201400212
12. Wang, H. B., Y. J. Cheng, and Z. N. Chen, "Wideband and wide-angle single-layered-substrate linear-to-circular polarization metasurface converter," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 1186-1191, 2020.
doi:10.1109/TAP.2019.2938683
13. Doumanis, E., et al. "Electronically reconfigurable liquid crystal based mm-wave polarization converter," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2302-2307, 2014.
doi:10.1109/TAP.2014.2302844
14. Rutz, F., T. Hasek, M. Koch, H. Richter, and U. Ewert, "Terahertz birefringence of liquid crystal polymers," Appl. Phys. Lett., Vol. 89, 221911, 2006.
doi:10.1063/1.2397564
15. Li, Y., Q. Cao, and Y. Wang, "A wideband multifunctional multilayer switchable linear polarization metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 7, 1314-1318, 2018.
doi:10.1109/LAWP.2018.2843816
16. Abadi, S. M. A. M. H. and N. Behdad, "Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 525-534, 2016.
doi:10.1109/TAP.2015.2504999
17. Khan, M. I., B. Hu, Y. Chen, N. Ullah, M. J. I. Khan, and A. U. R. Khalid, "Multiband efficient asymmetric transmission with polarization conversion using chiral metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 7, 1137-1141, 2020.
doi:10.1109/LAWP.2020.2991521
18. Fahad, A. K., et al. "Triband ultrathin polarization converter for X/Ku/Ka-band microwave transmission," IEEE Microw. Wirel. Components Lett., Vol. 30, No. 4, 351-354, 2020.
doi:10.1109/LMWC.2020.2973040
19. Yang, W., K.-W. Tam, W.-W. Choi, W. Che, and H. T. Hui, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130
20. Li, F., et al. "Compact high-efficiency broadband metamaterial polarizing reflector at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 2, 606-614, 2019.
doi:10.1109/TMTT.2018.2881967
21. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S. Gong, "A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3291-3295, 2017.
doi:10.1109/TAP.2017.2694879
22. Huang, X., H. Yang, D. Zhang, and Y. Luo, "Ultrathin dual-band metasurface polarization converter," IEEE Trans. Antennas Propag., Vol. 67, No. 7, 4636-4641, 2019.
doi:10.1109/TAP.2019.2911377
23. Khan, M. I., B. Hu, Y. Chen, N. Ullah, M. J. I. Khan, and A. R. Khalid, "Multiband efficient asymmetric transmission with polarization conversion using chiral metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 7, 1137-1141, 2020.
doi:10.1109/LAWP.2020.2991521
24. Bakal, F., A. Yapici, M. Karaaslan, and O. Akgol, "Microwave absorption performance of hexagonal nano boron nitride doped basalt fabric-reinforced epoxy composites," Aircr. Eng. Aerosp. Technol., Vol. 93, No. 1, 205-211, 2021.
doi:10.1108/AEAT-06-2020-0126
25. Yang, Z., S. Yu, N. Kou, F. Long, Z. Ding, and Z. Zhang, "Ultrathin tri-band reflective cross-polarization artificial electromagnetic metasurface," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1491-1501, 2020.
doi:10.1080/09205071.2020.1787232
26. Al-Badri, K. S. L., Y. I. Abdulkarim, F. O. Alkurt, and M. Karaaslan, "Simulated and experimental ¨ verification of the microwave dual-band metamaterial perfect absorber based on square patch with a 45◦ diagonal slot structure," Journal of Electromagnetic Waves and Applications, 12, 2021.
27. Sagık, M., "Optimizing the gain and directivity of a microstrip antenna with metamaterial structures by using artificial neural network approach," Wirel. Pers. Commun., Vol. 118, No. 1, 109-124, 2021.
doi:10.1007/s11277-020-08004-8