1. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137
2. Ambrosanio, M., P. Kosmas, and V. Pascazio, "A multithreshold iterative DBIM-based algorithm for the imaging of heterogeneous breast tissues," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 2, 509-520, 2018.
doi:10.1109/TBME.2018.2849648
3. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, Wiley, Hoboken, NJ, USA, 2018.
doi:10.1002/9781119311997
4. Randazzo, A., C. Ponti, A. Fedeli, C. Estatico, P. D'Atanasio, M. Pastorino, and G. Schettini, "A two-step inverse-scattering technique in variable-exponent lebesgue spaces for through-the-wall microwave imaging: Experimental results," IEEE Transactions on Geoscience and Remote Sensing, 2021.
5. Huang, T. and A. S. Mohan, "Microwave imaging of perfect electrically conducting cylinder by micro-genetic algorithm," IEEE Antennas and Propagation Society Symposium, Vol. 1, IEEE, 2004.
6. Semenov, S. Y., et al. "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2284-2294, Jul. 2005.
doi:10.1109/TMTT.2005.850459
7. Rajan, S. D. and G. V. Frisk, "A comparison between the Born and Rytov approximations for the inverse backscattering problem," Geophysics, Vol. 54, 864-871, 1989.
doi:10.1190/1.1442715
8. Majobi, P. and J. LeVetri, "Comparison of TE and TM inversions in the framework of the Gauss-Newton Method," IEEE Transactions on Antennas and Propagation, Vol. 64, 1336-1348, 2010.
doi:10.1109/TAP.2010.2041156
9. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Probl., Vol. 25, 1-41, 2009.
10. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731
11. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, Vol. 58, No. 6, 1182-1195, 2008.
doi:10.1002/mrm.21391
12. Pan, X. and E. Y. Sidky, "Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization," Physics in Medicine and Biology, Vol. 53, No. 17, 4777-4807, 2008.
doi:10.1088/0031-9155/53/17/021
13. Naghsh, N. Z., A. Ghorbani, and H. Amindavar, "Compressive sensing for microwave breast cancer imaging," IET Signal Processing, Vol. 12, No. 2, 242-246, 2017.
doi:10.1049/iet-spr.2015.0537
14. Rekanos, I. T., "Neural-network-based inverse-scattering technique for online microwave medical imaging," IEEE Transactions on Magnetics, Vol. 38, No. 2, 1061-1064, 2002.
doi:10.1109/20.996272
15. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2019.
doi:10.1109/TGRS.2018.2869221
16. Guo, R., X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, "Supervised descent learning technique for 2-D microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3550-3554, 2019.
doi:10.1109/TAP.2019.2902667
17. Zhang, L., K. Xu, R. Song, X. Z. Ye, G. Wang, and X. Chen, "Learning-based quantitative microwave imaging with a hybrid input scheme," IEEE Sensors Journal, Vol. 20, No. 24, 15007-15013, 2020.
doi:10.1109/JSEN.2020.3012177
18. Geffrin, J.-M., P. Sabouroux, and C. Eyraoud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Probl., Vol. 21, No. 6, 117-130, 2005.
doi:10.1088/0266-5611/21/6/S09
19. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Medical. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334
20. Anzengruber, S. W. and R. Ramlau, "Convergence rates for morozov’s discrepancy principle using variational inequalities," Inverse Problems, Vol. 27, No. 10, 105007, 2011.
doi:10.1088/0266-5611/27/10/105007
21. Liu, Z. and Z. Nie, "Subspace-based variational born iterative method for solving inverse scattering problems," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 7, 1017-1020, Jul. 2019.
doi:10.1109/LGRS.2018.2889886
22. Li, M., O. Semerci, and A. Abubakar, "A contrast source inversion method in the wavelet domain," Inverse Probl., Vol. 29, No. 2, 025015, 2013.
doi:10.1088/0266-5611/29/2/025015
23. Ye, X., X. Chen, Y. Zhong, and K. Agarwal, "Subspace-based optimization method for reconstructing perfectly electric conductors," Progress In Electromagnetic Research, Vol. 100, 119-128, 2010.
doi:10.2528/PIER09111606
24. Zhong, Y. and X. Chen, "An FFT twofold subspace-based optimization method for solving electromagnetic inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 914-927, 2011.
doi:10.1109/TAP.2010.2103027
25. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," Proc. 18th Int. Conf. Med. Image Comput. Comput.-Assist. Intervention, 234-241, 2015.
26. Yao, H. M., W. E. I. Sha, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 11, 2254-2258, Nov. 2019.
doi:10.1109/LAWP.2019.2925578
27. Xu, K., L. Wu, X. Ye, and X. Chen, "Deep learning-based inversion methods for solving inverse scattering problems with phaseless data," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7457-7470, 2020.
doi:10.1109/TAP.2020.2998171
28. Zhang, Z., "Improved adam optimizer for deep neural networks," 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), 1-2, Banff, AB, Canada, 2018.
29. Rahangdale, A. and S. Raut, "Deep neural network regularization for feature selection in learning-to-rank," IEEE Access, Vol. 7, 53988-54006, 2019.
doi:10.1109/ACCESS.2019.2902640
30. Deng, L., "The MNIST database of handwritten digit images for machine learning research [Best of the Web]," IEEE Signal Processing Magazine, Vol. 29, No. 6, 141-142, Nov. 2012.
doi:10.1109/MSP.2012.2211477
31. Azghani, M. and F. Marvasti, "L2-regularized iterative weighted algorithm for inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2293-2300, 2016.
doi:10.1109/TAP.2016.2546385