Vol. 102
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-05-11
Transverse-EPT: a Local First Order Electrical Properties Tomography Approach Not Requiring Estimation of the Incident Fields
By
Progress In Electromagnetics Research M, Vol. 102, 137-148, 2021
Abstract
A new local method for magnetic resonance electrical properties tomography (EPT), dubbed transverse-EPT (T-EPT), is introduced. This approach iteratively optimizes the dielectric properties (conductivity and permittivity) and the z-component of the electric field strength, exploiting the locally E-polarized field structure typically present in the midplane of a birdcage radiofrequency (RF) coil. In contrast to conventional Helmholtz-based EPT, T-EPT does not impose homogeneity assumptions on the object, and requires only first order differences, which makes the method more accurate near tissue boundaries and more noise robust. Additionally, in contrast to integral equation-based approaches, estimation of the incident fields is not required. The EPT approach is derived from Maxwell's equations and evaluated on simulated data of a realistic tuned RF coil model to demonstrate its potential.
Citation
Reijer Leijsen, Wyger Brink, Xin An, Andrew Webb, and Rob F. Remis, "Transverse-EPT: a Local First Order Electrical Properties Tomography Approach Not Requiring Estimation of the Incident Fields," Progress In Electromagnetics Research M, Vol. 102, 137-148, 2021.
doi:10.2528/PIERM21021006
References

1. Balidemaj, E., H. P. Kok, G. Schooneveldt, A. L. van Lier, R. F. Remis, L. J. Stalpers, H. Westerveld, A. J. Nederveen, C. A. van den Berg, and J. Crezee, "Hyperthermia treatment planning for cervical cancer patients based on electrical conductivity tissue properties acquired in vivo with EPT at 3 T MRI," Int. J. Hyperther., Vol. 32, No. 5, 558-568, 2016.
doi:10.3109/02656736.2015.1129440

2. Gandhi, O. P. and X. B. Chen, "Specific absorption rates and induced current densities for an anatomy-based model of the human for exposure to time-varying magnetic fields of MRI," Magn. Reson. Med., Vol. 41, No. 1, 816-823, 1999.
doi:10.1002/(SICI)1522-2594(199904)41:4<816::AID-MRM22>3.0.CO;2-5

3. Kim, S. Y., J. Shin, D. H. Kim, M. J. Kim, E. K. Kim, H. J. Moon, and J. H. Yoon, "Correlation between conductivity and prognostic factors in invasive breast cancer using magnetic resonance electric properties tomography (MREPT)," Eur. Radiol., Vol. 26, No. 7, 2317-2326, 2016.
doi:10.1007/s00330-015-4067-7

4. Tha, K. K., U. Katscher, S. Yamaguchi, C. Stehning, S. Terasaka, N. Fujima, K. Kudo, T. Yamamoto, M. van Cauteren, and H. Shirat, "Noninvasive electrical conductivity measurement by MRI: A test of its validity and the electrical conductivity characteristics of glioma," Eur. Radiol., Vol. 28, No. 1, 348-355, 2018.
doi:10.1007/s00330-017-4942-5

5. Katscher, U. and C. A. T. van den Berg, "Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications," NMR Biomed., Vol. 30, No. 8, e3729, 2017.
doi:10.1002/nbm.3729

6. Liu, J., U. Katscher, and B. He, "Electrical properties tomography based on B1 maps in MRI: Principles, applications, and challenges," IEEE Trans. Biomed. Eng., Vol. 64, No. 11, 2515-2530, 2017.
doi:10.1109/TBME.2017.2725140

7. Leijsen, R., W. Brink, C. van den Berg, A. Webb, and R. Remis, "Electrical properties tomography: A methodological review," Diagnostics, Vol. 11, No. 2, 176, 2021.
doi:10.3390/diagnostics11020176

8. van den Bergen, B., C. C. Stolk, J. B. van den Berg, J. J. Lagendijk, and C. A. van den Berg, "Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI," Phys. Med. Biol., Vol. 54, No. 5, 1253-1264, 2009.
doi:10.1088/0031-9155/54/5/010

9. Balidemaj, E., C. A. van den Berg, J. Trinks, A. L. van Lier, A. J. Nederveen, L. J. Stalpers, J. A. Lukas, H. Crezee, and R. F. Remis, "CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography," IEEE Trans. Med. Imag., Vol. 34, No. 9, 1788-1796, 2015.
doi:10.1109/TMI.2015.2404944

10. Fuchs, P. S., S. Mandija, P. R. Stijnman, W. M. Brink, C. A. van den Berg, and R. F. Remis, "First-order induced current density imaging and electrical properties tomography in MRI," IEEE T. Comp. Imag., Vol. 4, No. 4, 624-631, 2018.

11. Haacke, E. M., L. S. Petropoulos, E. W. Nilges, and D. H. Wu, "Extraction of conductivity and permittivity using magnetic resonance imaging," Phys. Med. Biol., Vol. 36, No. 6, 723-734, 1991.
doi:10.1088/0031-9155/36/6/002

12. Voigt, T., U. Katscher, and O. Doessel, "Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography," Magn. Reson. Med., Vol. 66, No. 2, 456-466, 2011.
doi:10.1002/mrm.22832

13. Marques, J. P., D. K. Sodickson, O. Ipek, C. M. Collins, and R. Gruetter, "Single acquisition electrical property mapping based on relative coil sensitivities: A proof-of-concept demonstration," Magn. Reson. Med., Vol. 74, No. 1, 185-195, 2015.
doi:10.1002/mrm.25399

14. Hampe, N., M. Herrmann, T. Amthor, C. Findeklee, M. Doneva, and U. Katscher, "Dictionary-based electric properties tomography," Magn. Reson. Med., Vol. 81, No. 1, 342-349, 2019.
doi:10.1002/mrm.27401

15. Mandija, S., E. F. Meliad`o, N. R. Huttinga, P. R. Luijten, and C. A. van den Berg, "Opening a new window on MR-based electrical properties tomography with deep learning," Sci. Rep., Vol. 9, No. 1, 1-9, 2019.
doi:10.1038/s41598-019-45382-x

16. Hong, R., S. Li, J. Zhang, Y. Zhang, N. Liu, Z. Yu, and Q. H. Liu, "3-D MRI-based electrical properties tomography using the volume integral equation method," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 12, 4802-4811, 2017.
doi:10.1109/TMTT.2017.2725830

17. Leijsen, R. L., W. M. Brink, C. A. van den Berg, A. G. Webb, and R. F. Remis, "3-D contrast source inversion-electrical properties tomography," IEEE Trans. Med. Imag., Vol. 37, No. 9, 2080-2089, 2018.
doi:10.1109/TMI.2018.2816125

18. Serralles, J. E. C., I. I. Giannakopoulos, B. Zhang, C. Ianniello, M. A. Cloos, A. G. Polimeridis, J. K. White, D. K. Sodickson, L. Daniel, and R. Lattanzi, "Noninvasive estimation of electrical properties from magnetic resonance measurements via global Maxwell tomography and match regularization," IEEE Trans. Biomed. Eng., Vol. 67, No. 1, 3-15, 2019.
doi:10.1109/TBME.2019.2907442

19. Van Lier, A. L., D. O. Brunner, K. P. Pruessmann, D. W. Klomp, P. R. Luijten, J. J. Lagendijk, and C. A. van den Berg, "B1+ phase mapping at 7 T and its application for in vivo electrical conductivity mapping," Magn. Reson. Med., Vol. 67, No. 2, 552-561, 2012.
doi:10.1002/mrm.22995

20. Christ, A., et al. "The Virtual Family — Development of surface-based anatomical models of two adults and two children for dosimetric simulation," Phys. Med. Biol., Vol. 55, No. 2, N23-N38, 2009.
doi:10.1088/0031-9155/55/2/N01

21. Mandija, S., A. Sbrizzi, U. Katscher, P. R. Luijten, and C. A. van den Berg, "Error analysis of helmholtz-based MR-electrical properties tomography," Magn. Reson. Med., Vol. 80, No. 1, 90-100, 2018.
doi:10.1002/mrm.27004

22. Lee, S., S. Bulumulla, F. Wiesinger, L. Sacolick, W. Sun, and I. Hancu, "Tissue electrical property mapping from zero echo-time magnetic resonance imaging," IEEE Trans. Med. Imag., Vol. 34, No. 2, 554-550, 2014.

23. Guo, L., J. Jin, M. Li, Y. Wang, C. Liu, F. Liu, and S. Crozier, "Reference-based integral MR-EPT: Simulation and experiment studies at 9.4 T MRI," IEEE Trans. Biomed. Eng., Vol. 66, No. 7, 1832-1843, 2018.
doi:10.1109/TBME.2018.2879667

24. Hafalir, F. S., O. F. Oran, N. Gurler, and Y. Z. Ider, "Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)," IEEE Trans. Med. Imag., Vol. 33, No. 2, 777-793, 2014.
doi:10.1109/TMI.2013.2296715

25. Vernickel, P., P. R¨oschmann, C. Findeklee, K. M. L¨udeke, C. Leussler, J. Overweg, U. Katscher, I. Grasslin, and K. Schuneman, "Eight-channel transmit/receive body MRI coil at 3 T," Magn. Reson. Med., Vol. 58, No. 2, 381-389, 2007.
doi:10.1002/mrm.21294

26. Vaughan, J. T., H. P. Hetherington, J. O. Otu, J. W. Pan, and G. M. Pohost, "High frequency volume coils for clinical NMR imaging and spectroscopy," Magn. Reson. Med., Vol. 32, No. 2, 206-218, 1994.
doi:10.1002/mrm.1910320209

27. Arduino, A., O. Bottauscio, M. Chiampi, and L. Zilberti, "Magnetic resonance-based imaging of human electric properties with phaseless contrast source inversion," Inverse Probl., Vol. 34, No. 8, 084002, 2018.
doi:10.1088/1361-6420/aac536

28. Gurler, N. and Y. Z. Ider, "Gradient-based electrical conductivity imaging using MR phase," Magn. Reson. Med., Vol. 77, No. 1, 137-150, 2017.
doi:10.1002/mrm.26097

29. Liu, J., X. Zhang, S. Schmitter, P. F. van de Moortele, and B. He, "Gradient-based electrical properties tomography (g EPT): A robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging," Magn. Reson. Med., Vol. 74, No. 3, 634-646, 2015.
doi:10.1002/mrm.25434