1. Simon, M. K. and M.-S. Alouini, Digital Communication over Fading Channels, Vol. 95, John Wiley & Sons, 2005.
2. Proakis, J. G. and M. Salehi, Digital Communications, Vol. 4, McGraw-Hill, 2001.
3. Savischenko, N. V., Special Integral Functions Used in Wireless Communications Theory, World Scientific, 2014.
doi:10.1142/9168
4. Niranjayan, S. and N. C. Beaulieu, "Analysis of wireless communication systems in the presence of non-Gaussian impulsive noise and Gaussian noise," 2010 IEEE Wireless Communication and Networking Conference, 1-6, IEEE, 2010.
5. Sharma, S., V. Bhatia, and A. K. Mishra, "Wireless consumer electronic devices: The effects of impulsive radio-frequency interference," IEEE Consumer Electronics Magazine, Vol. 8, No. 4, 56-61, 2019.
doi:10.1109/MCE.2019.2905538
6. Laguna-Sanchez, G. and M. Lopez-Guerrero, "On the use of alpha-stable distributions in noise modeling for PLC," IEEE Transactions on Power Delivery, Vol. 30, No. 4, 1863-1870, 2015.
doi:10.1109/TPWRD.2015.2390134
7. Banerjee, S. and M. Agrawal, "Underwater acoustic communication in the presence of heavy-tailed impulsive noise with bi-parameter cauchy-gaussian mixture model," 2013 Ocean Electronics (SYMPOL), 1-7, IEEE, 2013.
8. Shongwe, T., A. J. H. Vinck, and H. C. Ferreira, "A study on impulse noise and its models," SAIEE Africa Research Journal, Vol. 106, No. 3, 119-131, 2015.
doi:10.23919/SAIEE.2015.8531938
9. Samoradnitsky, G., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Routledge, 2017.
doi:10.1201/9780203738818
10. Nolan, J. P., "Numerical calculation of stable densities and distribution functions," Communications in Statistics. Stochastic Models, Vol. 13, No. 4, 759-774, 1997.
doi:10.1080/15326349708807450
11. Ashraf, U. and G. R. Begh, "Performance evaluation of Nakagami-m fading with impulsive noise," IET Communications, 2021, DOI: 10.1049/cmu2.12065.
12. Chen, Y., F. Xu, and J. Chen, "Polynomial-approximation-based locally optimum detector for signals with symmetric alpha stable noise," IET Communications, Vol. 8, No. 16, 2952-2960, 2014.
doi:10.1049/iet-com.2014.0385
13. Chitre, M. A., J. R. Potter, and S. Ong, "Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise," IEEE Journal of Oceanic Engineering, Vol. 31, No. 2, 497-503, 2006.
doi:10.1109/JOE.2006.875272
14. Sun, W., X. Yuan, J. Wang, Q. Li, L. Chen, and D. Mu, "End-to-end data delivery reliability model for estimating and optimizing the link quality of industrial WSNs," IEEE Transactions on Automation Science and Engineering, Vol. 15, No. 3, 1127-1137, 2018.
doi:10.1109/TASE.2017.2739342
15. Rajan, A. and C. Tepedelenlioglu, "Diversity combining over Rayleigh fading channels with symmetric alpha-stable noise," IEEE Transactions on Wireless Communications, Vol. 9, No. 9, 2968-2976, 2010.
doi:10.1109/TWC.2010.071410.100194
16. Silva, H. S., W. J. Queiroz, D. B. Almeida, F. Madeiro, and M. S. Alencar, "Bit error probability of the M-QAM scheme subject to multilevel double gated additive white Gaussian noise and η-μ, κ-μ, or α-μ fading," Transactions on Emerging Telecommunications Technologies, Vol. 30, No. 12, e3682, 2019.
doi:10.1002/ett.3682
17. Yilmaz, F. and M.-S. Alouini, "On the bit-error rate of binary phase shift keying over additive white generalized Laplacian noise (AWGLN) channels," 2018 26th Signal Processing and Communications Applications Conference (SIU), 1-4, IEEE, 2018.
18. Almehmadi, F. S. and O. S. Badarneh, "On the error rate of coherent binary modulation techniques in mobile communication systems over generalized fading channels impaired by generalized Gaussian noise," AEU-International Journal of Electronics and Communications, Vol. 82, 14-19, 2017.
doi:10.1016/j.aeue.2017.07.021
19. Miyamoto, S., M. Katayama, and N. Morinaga, "Performance analysis of QAM systems under class A impulsive noise environment," IEEE Transactions on Electromagnetic Compatibility, Vol. 37, No. 2, 260-267, 1995.
doi:10.1109/15.385891
20. Tepedelenlioglu, C. and P. Gao, "Performance of diversity reception over fading channels with impulsive noise," 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, iv-iv, IEEE, 2004.
21. Weng, J. F. and S. H. Leung, "On the performance of DPSK in rician fading channels with class A noise," IEEE Transactions on Vehicular Technology, Vol. 49, No. 5, 1934-1949, 2000.
doi:10.1109/25.892596
22. Queiroz, W. J., F. Madeiro, W. T. Lopes, and M. S. Alencar, "On the performance of M-QAM for Nakagami channels subject to gated noise," Telecommunication Systems, Vol. 68, No. 1, 1-10, 2018.
doi:10.1007/s11235-017-0371-7
23. Silva, H. S., M. S. Alencar, W. J. Queiroz, D. B. Almeida, and F. Madeiro, "Bit error probability of the M-QAM scheme under η-μ fading and impulsive noise in a communication system using spatial diversity," International Journal of Communication Systems, Vol. 32, No. 11, e3959, 2019.
doi:10.1002/dac.3959
24. Mei, Z., M. Johnston, S. Le Goff, and L. Chen, "Error probability analysis of M-QAM on Rayleigh fading channels with impulsive noise," 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, IEEE, 2016.
25. Mei, Z., M. Johnston, S. Le Goff, and L. Chen, "Performance analysis of LDPC-coded diversity combining on rayleigh fading channels with impulsive noise," IEEE Transactions on Communications, Vol. 65, No. 6, 2345-2356, 2017.
doi:10.1109/TCOMM.2017.2683485
26. Ndo, G., F. Labeau, and M. Kassouf, "A Markov-Middleton model for bursty impulsive noise: Modeling and receiver design," IEEE Transactions on Power Delivery, Vol. 28, No. 4, 2317-2325, 2013.
doi:10.1109/TPWRD.2013.2273942
27. Silva, H. S., M. S. de Alencar, W. J. de Queiroz, R. de A Coelho, and F. Madeiro, "Bit error probability of M-QAM under impulsive noise and fading modeled by using markov chains," Radioengineering, Vol. 27, No. 4, 1183-1190, 2018.
doi:10.13164/re.2018.1183
28. Gonzalez, J. G., J. L. Paredes, and G. R. Arce, "Zero-order statistics: A mathematical framework for the processing and characterization of very impulsive signals," IEEE Transactions on Signal Processing, Vol. 54, No. 10, 3839-3851, 2006.
doi:10.1109/TSP.2006.880306
29. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 7th Ed., Academic, 2007.
30. Karagiannidis, G. K. and A. S. Lioumpas, "An improved approximation for the Gaussian Q-function," IEEE Communications Letters, Vol. 11, No. 8, 644-646, 2007.
doi:10.1109/LCOMM.2007.070470
31. Yang, F. and X. Zhang, "Ber analysis for digital modulation schemes under symmetric alpha-stable noise," 2014 IEEE Military Communications Conference, 350-355, IEEE, 2014.
doi:10.1109/MILCOM.2014.63
32. Yacoub, M. D., "The α-μ distribution: A general fading distribution," The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Vol. 2, 629-633, IEEE, 2002.
doi:10.1109/PIMRC.2002.1047298
33. Alvi, S. H., S. Wyne, and D. B. da Costa, "Performance analysis of dual-hop AF relaying over α-μ fading channels," AEU-International Journal of Electronics and Communications, Vol. 108, 221-225, 2019.
doi:10.1016/j.aeue.2019.06.013
34. Yacoub, M. D., "The κ-μ distribution and the η-μ distribution," IEEE Antennas and Propagation Magazine, Vol. 49, No. 1, 68-81, 2007.
doi:10.1109/MAP.2007.370983
35. Badarneh, O. S., T. Aldalgamouni, and M. Aloqlah, "Outage probability analysis of multi-hop relayed wireless networks over η-μ fading channels," AEU-International Journal of Electronics and Communications, Vol. 67, No. 10, 833-838, 2013.
doi:10.1016/j.aeue.2013.04.005
36. Prudnikov, Y. A. P. and O. I. Marichev, Integrals, and series: More special functions, Vol. 3, Gordon and Breach Sci. Publ., 2007.
37. Ermolova, N. Y., "Moment generating functions of the generalized η-μ and κ-μ distributions and their applications to performance evaluations of communication systems," IEEE Communications Letters, Vol. 12, No. 7, 502-504, 2008.
doi:10.1109/LCOMM.2008.080365
38. Jameson, G. J. O., "Beyond the ratio test," The Mathematical Gazette, Vol. 555, No. 471-484, 102, 2018.