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BER Analysis in Non-Homogeneous Fading Environments
with Impulsive Noise

Umer Ashraf* and Ghulam R. Begh

Abstract—In this paper, using binary phase-shift keying (BPSK) modulation, analytical expressions of
bit-error-rate (BER) for various non-homogeneous fading environments (α-μ, η-μ and κ-μ) subjected to
SαS noise are obtained. The derived results are expressed in terms of Meijer’s G-function and Gamma
function. These expressions are used to study the performance of other prominent fading models (like
Nakagami-m, Rayleigh, Rician, and Hoyt) available in the technical literature. Further, it is shown that
the effect of the impulsive index (α) over BER is much pronounced compared to the amount of fading
(AF). Numerical results are provided for different impulsive settings. The results obtained agree with
those from simulations.

1. INTRODUCTION

Fading and noise are two key phenomena which describe the statistical behavior of a wireless channel.
Due to the presence of scatters within the propagation medium, the transmitted signal’s characteristics
get altered. Such a phenomenon, known as fading, severely affects the reception process [1]. The noise
which may result from man-made or natural phenomenon also affects the signal reception [2]. Owing
to simple analysis of additive white Gaussian noise, it has been extensively used to model noise in a
wireless communication link [3]. However, there are various communications scenarios where the effect
of non-Gaussian noise cannot be overlooked [4]. These include industrial environments [5], power line
communication (PLC) [6], and underwater communication setups [7]. Hence, by considering the non-
Gaussian nature of noise instead of classical Gaussian noise, the practical limits of a communication link
can be analyzed. Several non-Gaussian noise models have been reported in the literature [8]. One of the
important classes of non-Gaussian noise is the symmetric alpha-stable (SαS) noise [9–11]. It is a more
general representation of additive white Gaussian noise (AWGN) since it includes Gaussian noise as a
special case and satisfies generalized central limit theorem (GCLT) [9]. It is used to model atmospheric
noise [12], acoustic noise [13], and noise in industrial wireless sensor network (IWSW) [14]. Moreover,
the dynamic interference generated in a multi-user network, where different users are scattered in a
spatial Poisson field, can be modeled by SαS distribution [15]. Hence, it can be concluded that SαS
noise is a more general and practical representation of noise. To the best of our knowledge, there appears
no publication which deals with the performance analysis of α-μ, η-μ or κ-μ fading environments with
SαS noise. In this work, an attempt has been made to address this research gap. The motivation for
selecting α-μ, η-μ or κ-μ fading models are (a) The two-parameter fading models give better fit of the
signal variation as compared to a fading model with a single parameter. (b) Such fading distributions
represent small-scale fading effects effectively. (c) Also, these fading distributions correspond to some
well-know fading models as special cases. These include Nakagami-m, Rayleigh, Rician, Hoyt and
Weibull fading models [16].
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In a practical wireless scenario, both fading and non-Gaussian noise may affect the communication
link simultaneously and independently. For instance, in an industrial setup, the multi-path propagation
due to highly reflective metal surfaces can be captured by small-scale fading models, while non-Gaussian
noise models can effectively represent the excessive electromagnetic noise caused by the industrial
equipment (like large motors). Hence, by incorporating the appropriate fading and non-Gaussian noise
models, a practical insight of a typical communication link can be acquired.

The rest of this paper is structured as follows: Section 2 is devoted to BER performance over
different non-Gaussian noise models available in the technical literature. Section 3 deals with statistics
of SαS noise under consideration. The system model and performance analysis of BER over α-μ, η-μ,
and κ-μ fading environments with SαS noise are given in Sections 4 and 5, respectively. Section 6 is
dedicated to numerical results and analysis. This paper is concluded in Section 7.

2. BIT ERROR RATE (BER) ANALYSIS OVER DIFFERENT NON-GAUSSIAN
NOISE MODELS

In [17], using BPSK, the impact of additive white generalized Laplacian noise (AWGLN) and generalized-
K (GK) fading on the BER is evaluated. It is observed that there is a sharp increase in BER, as the
non-Gaussianity parameter (v) approaches 0. In [18], BER performance of coherent modulation schemes
subjected to generalized fading and generalized Gaussian noise (GGN) for different network topologies
is evaluated. In [19], using MQAM modulation, the symbol-error-probability (SEP) of an information-
bearing signal subjected to Gaussian and Middleton class A noise is evaluated. The effect of two critical
parameters of Middleton class A noise, namely impulsive index (A ≤ 1) and the ratio of Gaussian
to impulsive noise power (Γ) is analyzed. For a fixed value of A, as Γ increase, the corresponding
SEP approaches the SEP of Gaussian noise. On the other hand for a fixed value of Γ, as impulsive
index A decreases, there is a significant increase in SEP. In [20] it is shown that the BER performance
of a communication link affected by Rayleigh fading and Middleton Class A noise is improved by
post-detection Combining (PDC) technique rather than maximal-ratio Combining (MRC), which works
effectively in Gaussian noise. In [21], it is shown that BER can be further reduced by incorporating
error control codes (ECCs) like (7, 4) Hamming code and (23, 12) Golay code over a channel subjected
to Rician fading and Middleton Class A noise. In [22], using the MQAM modulation scheme, the BER
performance of a communication link under the joint influence of Gaussian noise, gated noise, and
Nakagami-m fading is evaluated. Two types of gated noise are considered: simple-gated and double-
gated. For SNR greater than 10 dB, the BER of simple-gated noise is more than double-gated noise.
This increase in BER occurs because simple-gated noise along with background Gaussian noise acts for
a considerable time interval. Double-gated noise is added to the background Gaussian noise only when
both the gating pulses are unitary. In [23], it is shown that by incorporating spatial diversity in a system
affected by double-gated noise and η-μ fading, the BER can be reduced significantly. In [24], using
MQAM modulation, bit-error-probability (BEP) is calculated for a communication channel subjected
to SαS noise and Rayleigh fading. The SαS noise is characterized by the impulsive index (α), where
α ∈ (0, 2]. As α approaches 0, there is a significant increase in BEP. In [25], it is shown that the
increase in BEP due to SαS noise can be reduced using different diversity techniques. It is shown that
BEP obtained using selection combining (SC) is less than BEP obtained using MRC and equal-gain
combining (EGC) for a strong impulsive channel. Recently Markov model was used to model impulsive
noise. In [26], Markov chains is used to represent the bursty nature of noise since pulses in bursty
noise are time-correlated while the Middleton model assumes that noise samples are independent and
identically distributed (i.i.d) and it deals only with amplitude or envelope statistics. The number of
states in a Markov model determines the dimension of a transition matrix. Hence, to decide the number
of states which accurately model the bursty noise behavior is challenging. In [27], a two-state Markov
chain model is used to study the effect of non-Gaussian noise and fading on BER performance. It
takes into account gated additive white Gaussian noise (GAWGN) with η-μ fading as one state and
double-gated additive white Gaussian noise (G2AWGN) with η-μ fading as another state. It is shown
that BER increases with the increase in the constellation order (M). Against this background on the
BER performance, we find that there is no work dealing with the BER performance of α-μ, η-μ and
κ-μ fading models with SαS noise. In the next section, we discuss the statistics of SαS noise.
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3. SYMMETRIC ALPHA-STABLE (SαS) NOISE

The probability density function (PDF) of SαS noise can be expressed as

fα(z) =
1
2π

∫ ∞

−∞
exp(jμαt − ρα|t|α) exp(−jtz)dt, (1)

The PDF of SαS noise is characterized by four parameters: α, β, ρ, μα. α ∈ (0, 2] is the impulsive
index which governs the impulsive nature of SαS noise. The impulsive behavior of SαS noise increase
significantly as α approaches 0. Such behavior is shown in Figure 1. β ∈ [0,1] determines the skewness
of SαS distribution. ρ ∈ R+ determines the spread, while μα ∈ R+ is associated with the position or
location of SαS distribution. Equation (5), corresponds to Gaussian and Cauchy distribution for α = 2
and α = 1, respectively.
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Figure 1. PDF of SαS noise.

3.1. Geometrical Signal-to-Noise Ratio

With the exception of Gaussian case (α = 2), the variance of SαS noise is infinite, and thus the
conventional definition of SNR cannot be used. The moments (E{|X|p}) of SαS distribution exist only
for 0 < p < α [9, property 1.2.16]. Hence, geometric signal-to-noise ratio (SNRg) is employed instead
of conventional signal-to-noise ratio (SNR). Geometric power (S0) for SαS noise is defined as [28]

S0 =
(Cg)1/αρ

Cg
. (2)

The SNRg is defined as

SNRg =
1

2Cg

(
A

So

)2

, (3)

where A is the amplitude of the signal and Cg ≈ 1.78. The normalization constant (1/2Cg) maps SαS
noise to Gaussian noise for α = 2. For BPSK, Eb

No
can be expressed as

Eb

No
=

SNRg

2Rc
, (4)

where Rc is the code rate. For uncoded BPSK system (Rc = 1) and A = ±1, Eq. (4) can be written as

Eb

No
=

SNRg

2
=

1

4C
( 2

α
−1)

g ρ2
. (5)
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3.2. Asymptotic Property of SαS Noise

The asymptotic property of a standard SαS random variable Y (α < 2) can be expressed as [24]

lim
y→∞P (Y > y) =

Cα

yα
, (6)

where Cα = 1
πΓ(α) sin

(
απ
2

)
and Γ(Φ) =

∫∞
0 tΦ−1e−tdt, is the Gamma function [29, Eq. (8.310.1)]. For

SαS noise, Q-function is defined as

Qα(y) =
∫ ∞

y
fα(z)dz. (7)

Therefore, Eq. (6) can be expressed as

lim
y→∞Qα(y) =

Cα

yα
, (8)

The primary motivation for employing the asymptotic property of SαS random variable is the analytical
tractability since its Cumulative Distribution Function (CDF) involves an integral [10, Theorem 1],
which subsequently increases the mathematical complexity.

4. SYSTEM MODEL

Mathematically, the received signal can be expressed as [2]

r = Hx + z, (9)

where x ∈ {±A} corresponds to the symbols of binary phase-shift keying (BPSK) modulation. H is the
channel gain with slow varying flat fading characteristics, and z can be Gaussian or non-Gaussian noise,
whose real and imaginary components are independent and identically distributed (i.i.d). In Eq. (9), z
follows SαS distribution. To distinguish the α appearing in α-μ fading model from the one appearing
in SαS noise, we denote fading parameter by αf and impulsive index by α.

5. PERFORMANCE ANALYSIS OF BER SUBJECTED TO FADING AND SαS
NOISE

For an AWGN channel, Q(y) is defined as Q(y) = 1√
2π

∫∞
y exp(−t2/2)dt [30]. As reported in [31] there

exists a consistent mapping between Q(y) and Qα(y). Such a mapping is given as

Q(y) → Qα

(√
2C

( 2
α
−1)

g y

)
. (10)

Therefore, the probability of error for SαS noise with BPSK modulation can be expressed as

Pα
e = Q

(√
2Eb

N0

)
= Qα

⎛
⎝
√

4EbC
( 2

α
−1)

g

N0

⎞
⎠ . (11)

With the aid of such a mapping, the BER performance of a communication link perturbed by fading
and SαS noise can be evaluated by its probability of error. It can be expressed as

P α
e =

∫ ∞

0
Qα

(√
4C

( 2
α
−1)

g γ

)
fΥ(γ)dγ, (12)

where fΥ(·) denotes the PDF of instantaneous signal-to-noise ratio (γ) per bit. An important
performance metric of a wireless channel is the amount of fading (AF). It is defined as the measure of
severity of fading. Mathematically, it is given as [1]

AF =
E[γ2]

(E[γ])2
− 1, (13)
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where E[·] is the statistical expectation operator. Higher values of AF indicate severe fading which
subsequently leads to weaker reception of the signal. For Nakagami-m fading channel, AF is given as

AF =
1
m

, (14)

where the fading parameter (m) ranges from 1/2 to ∞. Both α and AF dictate the BER performance
of a communication link.

5.1. α-μ Fading Model

Using random variable transformation, the PDF of α-μ fading channel (γ) can be expressed as [32, 33]

fΥ (γ) =
αfμμγ

(
αf μ

2

)
−1

2Γ(μ)γ̄
(

αf μ

2

) exp

⎛
⎝−μ

(
γ

γ̄

)αf
2

⎞
⎠ , (15)

where αf > 0 and μ > 1/2 represent the power exponent, and μ ∈ R+ denotes the number of multi-
path clusters of the α-μ fading channel. γ̄ is the average SNR and Γ(Φ) =

∫∞
0 tΦ−1e−tdt is the Gamma

function. With the aid of Eq. (8) and substituting Eq. (15) in Eq? (12), the error probability is given
by

P α−μ
e =

αfμμCα

2Γ(μ)γ̄
(

αf μ

2

) (
4C

2
α
−1

g

)α
2

∫ ∞

0
γ

αf μ−α

2
−1 exp

⎛
⎝−μ

(
γ

γ̄

)αf
2

⎞
⎠ dγ. (16)

Upon comparing Eq?? (16) with [29, Eq.? (3.326.2)], the above equation can be expressed as

P α−μ
e =

μ
α

αf CαΓ
(

μ − α

αf

)

Γ(μ)
(

4C
2
α
−1

g γ̄

)α
2

. (17)

Special case: The closed-form expression for probability of error over Rayleigh fading (αf = 2 and
μ = 1) with SαS noise can be expressed as

P Ray
e =

CαΓ(1 − α/2)(
4C

α
2
−1

g γ̄
)α

2

. (18)

5.2. η-μ Fading Model

This model represents small-scaling fading in a wireless channel with non-line-of sight (NLOS)
components. Using random variable transformation, the PDF of η-μ fading environment can be
expressed as [34],

fη−μ
Υ (γ) =

2
√

πμμ+ 1
2 hμγμ− 1

2

Γ(μ)Hμ− 1
2 γ̄μ+ 1

2

exp
(
−2μγh

γ̄

)
Iμ− 1

2

(
2μHγ

γ̄

)
, (19)

where Iv(·) is the modified Bessel function of first kind and vth order. Using the channel parameter
η, the parameters h and H can be expressed in two formats [35]. With Format 1 settings, Eq. (23)
corresponds to Nakagami-m fading (η → 1 and μ = m/2 ) and Hoyt fading (η = q2 and μ = 0.5). On
comparing e−x/2Iv(x/2) with [36, Eq. (8.4.22.3)], (19) can be expressed as

fη−μ
Υ (γ) =

2μμ+ 1
2 hμγμ− 1

2

Γ(μ)Hμ− 1
2 γ̄μ+ 1

2

exp
(
−2μ(h −H)γ

γ̄

)
G11

12

(
4μHγ

γ̄

∣∣∣∣∣ 1/2
μ − 1/2, 1/2 − μ

)
. (20)
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With the aid of Eq. (8) and substituting Eq. (20) in Eq. (12), we get

P η−μ
e =

2Cα

(
4C

2
α
−1

g

)−α
2

μμ+ 1
2 hμ

Γ(μ)Hμ− 1
2 γ̄μ+ 1

2

∫ ∞

0
γ−(α

2
−μ+ 1

2
) exp

(
−2μ(h −H)γ

γ

)

×G11
12

(
4μHγ

γ̄

∣∣∣∣∣ 1/2
μ − 1/2, 1/2 − μ

)
dγ. (21)

Upon comparing Eq. (21) with the standard integral given in [29, Eq. (7.813.1)], closed form of Eq. (21)
in terms of Meijer’s G-function can be expressed as

P η−μ
e =

(
μ

C1γ̄

)α
2

× 2C2Cα(h −H)C3 hμ

Γ(μ)Hμ− 1
2

G12
22

(
2H

h −H

∣∣∣∣∣ C2, 1/2
μ − 1/2, 1/2 − μ

)
, (22)

where C1 = 4C
2
α
−1

g , C2 = (α
2 − μ + 1

2 ), and C3 = (α
2 − μ − 1

2 ).

5.3. κ-μ Fading Model

This model is used to represent small-scaling fading in a wireless channel with line-of-sight (LOS)
components. Using random variable transformation, the PDF of κ-μ fading environment can be
expressed as [34, 37]

fκ−μ
Υ (γ) =

μ(1 + κ)
μ+1

2 γ
μ−1

2

exp(μκ)κ
μ−1

2 γ̄
μ+1

2

exp
(
−μ(1 + κ)γ

γ̄

)
Iμ−1

(
2μ

√
κ(1 + κ)γ

γ̄

)
, (23)

where the parameter κ is defined as the ratio of power due to dominant components to the total power
due to scattered components denotes the number of multi-path clusters within the fading environment.
Equation (23) encompasses some of the prominent fading channels available in the technical literature,
such as Nakagami-m (κ → 0 and μ = m) and Rician fading channel (κ = K and μ = 1). Expressing
Iv(·) with infinite series representation [29, Eq. (8.445)], Eq. (23) can be expressed as

fκ−μ
Υ (γ) =

∞∑
n=0

μμ+2n(1 + κ)μ+nκnγμ+n−1

exp(μκ)γ̄μ+n

exp [−(μγ(1 + κ))/γ̄]
n!Γ(μ + n)

. (24)

With the aid of Eq. (8) and substituting Eq. (24) in Eq. (12), we get

P κ−μ
e =

∞∑
n=0

∫ ∞

0

Cα(4Cg)
2
α
−1μμ+2n(1 + k)μ+n kn

exp(μκ)γ̄μ+n

γμ+n−α
2
−1

n!Γ(μ + n)
exp

(−μ(1 + κ)γ
γ̄

)
dγ. (25)

Upon comparing Eq. (25) with [29, Eq. (3.326.2)], the above equation can be expressed as

P κ−μ
e =

Cα

exp(μκ)

(
μ(1 + κ)

C1γ̄)

)α/2 ∞∑
n=0

(μκ)nΓ
(
μ + n − α

2

)
n! Γ(μ + n)

, (26)

where C1 = 4C
2
α
−1

g . As shown in Appendix A, the infinite series given in Eq. (26) is convergent.
Equations (17), (22), and (26) are valid for arbitrary values of α, μ, and κ. These derived equations

can be employed to assess the performance of other prominent fading environments (like Nakagami-m,
Rayleigh and Weibull) available in the technical literature.

6. NUMERICAL RESULTS AND ANALYSIS

The amount of fading (AF) and impulsive index (α) are two key parameters which dictate the BER
performance of the channel under consideration. As shown in Figures 2, 3, and 4, it is clear that BER
varies significantly with respect to α. For a fixed impulsive index (α), as the AF is varied (by varying μ, η
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Figure 2. Effect of α (impulsive index) on the BER for BPSK modulation over α-μ fading channel
with SαS noise. Simulations: Diamond marker.
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Figure 3. Effect of α (impulsive index) on the BER for BPSK modulation over η-μ fading channel
(Format 1) with SαS noise. Simulations: Diamond marker.
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Figure 4. Effect of α (impulsive index) on the BER for BPSK modulation over κ-μ fading channels
with SαS noise. Simulations: Diamond marker.
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and κ), the corresponding BER does not vary notably. Hence it is concluded that the effect of α is more
pronounced than AF. In the case of κ-μ fading model with γ̄ = 10 dB, as the fading channel is perturbed
from Rician channel (K = κ = 1, μ = 1) to Rayleigh channel (μ = m = 1, κ → 0), the corresponding
BER increases by 19.5% and 9.7% for α = 1.5 and α = 1 respectively. For η-μ fading model (Format 1)
with γ̄ = 10 dB, as the fading dynamics change from Rayleigh (μ = m/2 = 1/2, η → 1) to Hoyt channel
(μ = 0.5, η = 0.5 = q2), the corresponding BER increases by 4.15% and 2.45% for α = 1.5 and α = 1
respectively. Here K,m and q are different fading parameters corresponding to Rician, Nakagami-m
and Hoyt fading environments, respectively.

7. CONCLUSION

In this work, analytical expressions of BER are obtained for various non-homogeneous fading
environments (α-μ, η-μ and κ-μ) with SαS noise. The results reveal that BER increases significantly
as α approaches 0. For different values of αf , η, κ, and μ, the BER performance of various standard
fading models (like Nakagami-m, Rayleigh, and Hoyt) are evaluated. From the interplay among different
fading parameters and impulsive index (α), the results show that for a particular impulsive index (α),
the BER variation due to different fading parameters (αf , η, κ, and μ) is not so dominant. Hence,
impulsive noise plays a crucial role in the BER performance of a wireless communication link.

APPENDIX A.

The infinite series given in Eq. (26) can be expressed as

∞∑
n=0

(μκ)nΓ
(
μ + n − α

2

)
n! Γ(μ + n)

. (A1)

The nth term of the above infinite series can be written as

un =
(μκ)nΓ

(
μ + n − α

2

)
n! Γ(μ + n)

. (A2)

Employing D’Alembert’s Ratio test [38] and Γ(z + 1) = zΓ(z), we get

lim
n→∞

un+1

un
= lim

n→∞

(μκ)
(
μ + n − α

2

)
(1 + n)(μ + n)

. (A3)

The above equation can be written as

lim
n→∞

un+1

un
= lim

n→∞
μκ

1 + n

(
1 − α

2(μ + n)

)
. (A4)

From the above equation, it is clear that for finite values of μ and κ, lim
n→∞

un+1

un
→ 0 as n → +∞. Hence,

the infinite series given in Eq. (26) is convergent by D’Alembert’s Ratio test.
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