Vol. 101
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-03-20
Diffraction of the Electromagnetic Plane Waves by Double Half-Plane with Fractional Boundary Conditions
By
Progress In Electromagnetics Research M, Vol. 101, 207-218, 2021
Abstract
In this article, the diffraction of E-polarized electromagnetic plane waves by a double half-plane structure is taken into account. The shift of the upper half-plane through the horizontal axis for different wavenumber and boundary conditions are considered. On the double half-plane structure, fractional boundary conditions are required on the half-plane surfaces. The half-planes are parallel to each other with a variable shift in distance and location. The formulation of the problem is given where the boundary condition is explained, and the integral equations for each half-plane are obtained by using fractional calculus and Fourier Transform techniques. Then, for numerical calculations, the induced current on each half-plane is expressed as the summation of Laguerre polynomials. This leads to having a system of linear algebraic equations needed to be solved. The numerical results show that the shift and the distance between the half-planes give a very important effect on the field values inside and outside the guiding structure. The results are compared and analyzed with Method of Moment and previous results.
Citation
Vasil Tabatadze, Kamil Karaçuha, Eldar I. Veliyev, and Ertuğrul Karaçuha, "Diffraction of the Electromagnetic Plane Waves by Double Half-Plane with Fractional Boundary Conditions," Progress In Electromagnetics Research M, Vol. 101, 207-218, 2021.
doi:10.2528/PIERM21012003
References

1. Mittra, R. and S. W. Lee, Analytical Technique in the Theory of Guided Waves, The Macmillan Company, 1971.

2. Nethercote, M. A., R. C. Assier, and I. D. Abrahams, "Analytical methods for perfect wedge diffraction: A review," Wave Motion, Vol. 93, 102479, 2020.
doi:10.1016/j.wavemoti.2019.102479

3. Rudduck, R. and L. Tsai, "Aperture reflection coefficient of TEM and TE01 mode parallel-plate waveguides," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 1, 83-89, 1968.
doi:10.1109/TAP.1968.1139123

4. Hame, Y. and I. H. Tayyar, "Plane wave diffraction by dielectric loaded thick-walled parallel-plate impedance waveguide," Progress In Electromagnetics Research, Vol. 44, 143-167, 2004.

5. Zheng, J.-P. and K. Kobayashi, "Plane wave diffraction by a finite parallel-plate waveguide with four-layer material loading: Part 1 - The case of E-polarization," Progress In Electromagnetics Research B, Vol. 6, 1-36, 2008.
doi:10.2528/PIERB08031219

6. Alkumru, A., "Plane wave diffraction by three parallel thick impedance half-planes," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 6, 801-819, 1998.
doi:10.1163/156939398X01051

7. Tiberio, R. and R. Kouyoumjian, "Calculation of the high-frequency diffraction by two nearby edges illuminated at grazing incidence," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 11, 1186-1196, 1984.
doi:10.1109/TAP.1984.1143244

8. Umul, Y. Z., "Diffraction of waves by a boundary between two half-planes with different resistivities," Optics Letters, Vol. 40, No. 7, 1306-1309, 2015.
doi:10.1364/OL.40.001306

9. Umul, Y. Z., "Wave diffraction by a reflectionless half-plane," Applied Optics, Vol. 56, No. 33, 9293-9300, 2017.
doi:10.1364/AO.56.009293

10. Basdemir, H. D., "Scattering of plane waves by a rational half-plane between DNG media," Optik, Vol. 179, 47-53, 2019.
doi:10.1016/j.ijleo.2018.10.113

11. Veliyev, E. I., V. Tabatadze, K. Karaçuha, and E. Karaçuha, "The diffraction by the half-plane with the Fractional boundary condition," Progress In Electromagnetics Research M, Vol. 88, 101-110, 2020.
doi:10.2528/PIERM19102408

12. Tabatadze, V., K. Karaçuha, E. I. Veliyev, and E. Karaçuha, "The diffraction by two half-planes and wedge with the fractional boundary condition," Progress In Electromagnetics Research M, Vol. 91, 1-10, 2020.
doi:10.2528/PIERM20020503

13. Veliev, E. I., T. Ahmedov, and M. Ivakhnychenko, Fractional Operators Approach and Fractional Boundary Conditions, Electromagnetic Waves, (ed.) Vitaliy Zhurbenko, IntechOpen, 2011, doi: 10.5772/16300.

14. Engheta, N., "Use of fractional integration to propose some ``fractional'' solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

15. Engheta, N., "Fractional curl operator in electromagnetics," Microwave and Optical Technology Letters, Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

16. Engheta, N., "On fractional calculus and fractional multipoles in electromagnetism," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 4, 554-566, 1996.
doi:10.1109/8.489308

17. Veliev, E. I. and N. Engheta, "Generalization of Green's theorem with fractional differintegration," Proceedings of IEEE AP-S International Symposium & USNC/URSI National Radio Science Meeting, 2003.

18. Engheta, N., "Fractionalization methods and their applications to radiation and scattering problems," Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory, 34-40, 2000.

19. Ivakhnychenko, M., E. Veliev, and T. Ahmedov, "Scattering properties of the strip with fractional boundary conditions and comparison with the impedance strip," Progress In Electromagnetics Research C, Vol. 2, 189-205, 2008.
doi:10.2528/PIERC08031502

20. Karaçuha, K., E. I. Veliyev, V. Tabatadze, and E. Karaçuha, "Application of the method of fractional derivatives to the solution of the problem of plane wave diffraction by two axisymmetric strips of different sizes," Proceedings of URSI International Symposium on Electromagnetic Theory (EMTS), San Diego, USA, 2019.

21. Tabatadze, V., K. Karaçuha, and E. I. Veliev, "The fractional derivative approach for the diffraction problems: Plane wave diffraction by two strips with the fractional boundary conditions," Progress In Electromagnetics Research C, Vol. 95, 251-264, 2019.
doi:10.2528/PIERC19062505

22. Karaçuha, K., E. I. Veliyev, V. Tabatadze, and E. Karaçuha, "Analysis of current distributions and radar cross sections of line source scattering from impedance strip by fractional derivative method," Advanced Electromagnetics, Vol. 8, No. 2, 108-113, 2019.
doi:10.7716/aem.v8i2.981

23. Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.

24. Prudnikov, H. P., Y. H. Brychkov, and O. I. Marichev, Special Functions, Integrals and Series, Vol. 2, Gordon and Breach Science Publishers, 1986.

25. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Transactions on Antennas and Propagation, Vol. 20, No. 4, 442-446, 1972.
doi:10.1109/TAP.1972.1140243

26. YouTube. [Online]. Available: https://www.youtube.com/user/vasilitabatadze/playlists. [Accessed: 15-Jan-2021].

27. Balanis, C. A., Antenna Theory Analysis and Design, Wiley, 2016.

28. Karaçuha, K., V. Tabatadze, and E. I. Veliev, "Plane wave diffraction by the strip with an integral boundary condition," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 28, No. 3, 1776-1790, 2020, doi: 10.3906/elk-1906-170.
doi:10.3906/elk-1906-170