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Diffraction of the Electromagnetic Plane Waves by Double
Half-Plane with Fractional Boundary Conditions

Vasil Tabatadze1, Kamil Karaçuha1, *, Eldar Veliev1, 2, and Ertuǧrul Karaçuha1

Abstract—In this article, the diffraction of E-polarized electromagnetic plane waves by a double half-
plane structure is taken into account. The shift of the upper half-plane through the horizontal axis
for different wavenumber and boundary conditions are considered. On the double half-plane structure,
fractional boundary conditions are required on the half-plane surfaces. The half-planes are parallel
to each other with a variable shift in distance and location. The formulation of the problem is given
where the boundary condition is explained, and the integral equations for each half-plane are obtained
by using fractional calculus and Fourier Transform techniques. Then, for numerical calculations, the
induced current on each half-plane is expressed as the summation of Laguerre polynomials. This leads
to having a system of linear algebraic equations needed to be solved. The numerical results show that
the shift and the distance between the half-planes give a very important effect on the field values inside
and outside the guiding structure. The results are compared and analyzed with Method of Moment and
previous results.

1. INTRODUCTION

The diffraction by half-plane is one of the first investigations of the electromagnetic phenomena with
the edge condition. The problem keeps its importance because the other geometries such as strip, arc,
or wedge are built on the approach developed for the half-plane. The exact solution of the half-plane
with a perfect electric conducting surface (PEC) was originally obtained by Sommerfeld [1]. After that,
many scientists have contributed to the topic including more complex and different scenarios for the
problem including half-planes. Once there exists more than one half-plane in the problem, which may
lead to having a guiding structure, and the investigation on the guiding structure is very critical and
crucial from the engineering point of view. The analytical outcomes or approximate formula for the
physical interpretation is meaningful for not only scientists but also designers and engineers. Our main
motivation is to analyze the effect of the variable shift and the distance between the half-planes on the
guiding mechanism and total field distribution for different cases of the fractional boundary conditions.

Previously in the literature, there are several comprehensive studies related to diffraction by
half-plane including double half-plane, wedge, and half-plane with different medium or boundary
conditions [1–13]. Since half-plane geometries have been investigated extensively, it is better to
summarize the literature to distinguish previous studies from the present study before the formulation
of the problem. In [1, 2], the authors proposed the analytical techniques for the solution of the problem
when the source is located inside the guiding structure. Other researchers considered two cases: the
diffraction by half-plane aperture and the wedge aperture [3]. Then, in [4], scientists obtained results
for the electromagnetic wave scattering when a dielectric object is inserted into the waveguide whereas
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a 4-layered material loading is investigated in [5]. Apart from the previous studies, in [5–10], the studies
generally focused on the material properties or multiple half-plane geometries.

Formerly, diffraction by a half-plane and wedge geometries with the fractional boundary condition
(integral boundary condition) has been examined in [11, 13]. The mathematical formulation and
numerical experiments for one half-plane were obtained. After a single half-plane problem, the diffraction
by a wedge problem was investigated for different boundary conditions. In these studies, the results are
compared with the Method of Moment (MoM) and previous analytical outcomes. The present study
can be thought of as the continuation of these researches regarding the fractional boundary condition.
However, parallelly located two-half plane (variable shift and distance) with the fractional boundary
condition is the novelty of the study.

Recently, the diffraction problems for such canonical structures (half-plane, strip, arc, disc, and
wedge) are again the interest of many researchers because the different boundary conditions, material
properties, or complex geometries still required to be solved [2, 5–12]. Therefore, problem diversity
including boundary conditions, material properties, and excitation types leads the scientist again to
target similar geometries. In the consideration, the interaction between two half-planes and waveguiding
properties of the structure for different fractional-orders is investigated in the case of the E-polarized
plane wave excitation. Previously, similar studies were done by many authors [5–12]. However, all of
them use Dirichlet, Neumann, or Impedance boundary conditions. Therefore, the present paper is the
first one to employ the fractional boundary conditions for this geometry.

Before going to mathematical manipulation for the diffraction problem, lastly, the fraction calculus
employed in electromagnetism and the impedance properties surface with fractional boundary condition
are explained briefly. The first studies related to the fractional approach for the electromagnetic theory
and its applications are investigated by Engheta [14–18]. Then, Veliyev et al. developed the idea for
the boundary condition which is called fractional boundary condition (FBC) [13, 17, 19]. The fractional
boundary condition is the generalization of the Dirichlet and Neumann Boundary Conditions. When the
fractional-order becomes 0, the boundary condition corresponds to the Dirichlet boundary condition,
whereas the Neumann boundary condition is obtained when the fractional order is equal to 1. The
fractional boundary condition (i.e., integral boundary condition) used in previous works [19–22] explains
a new material property (Perfect Electric Conducting (PEC), Perfect Magnetic Conducting (PMC) or
in between). Secondly, there exists a relation between the fractional-order and the impedance value (η)
which is η = −i∗tan

(
π
2 ν

)
for the normal incidence of electromagnetic plane wave [13, 19]. In Fig. 1, the

relation between the impedance and the fractional-order (FO) is given. Note that the y-axis of Fig. 1
consists of pure imaginary values.

Figure 1. The relation between the impedance and the fractional order.

In the following section, the formulation of the problem and the mathematical manipulations are
presented. Then, in Section 3, the numerical analysis of cases such as different values of wavenumber,
shift for the upper half-plane, and the angle of incidence is conducted. Later, the comparison with the
Method of Moments is presented. Finally, the conclusion is drawn.
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2. FORMULATION OF THE PROBLEM

In this section, the geometry of the problem, the derivation of integral equations for each half-plane,
obtaining the system of linear algebraic equations by introducing the unknown coefficient, and the
orthogonal polynomials are presented. Even though the procedure for the solution of the diffraction
problem is quite complex and multi-staged, the approach is straightforward. It is better to summarize
the method as follows. First, it is required to express each field component in a mathematical form.
Then, the boundary condition is introduced. After that, the coupled-integral equation for each geometry
structure is obtained by applying the boundary condition. Later, the main goal is to solve those coupled-
integral equations by means of expressing the current density induced on the geometries in terms of
complete orthogonal polynomials.

The incidence wave is an E-polarized uniform plane wave as given in Eq. (1). In Fig. 2, the geometry
of the problem is shown. The upper plane in general is shifted by the distance a. The distance between
half-planes is l.

�Ei (x, y) = êze
−ik(x cos θ+y sin θ) (1)

Here, �Ei is the incidence wave, k = 2π/λ the wavenumber, λ the wavelength in free space, θ the angle
of incidence, and êz the unit vector in the direction of z. The time dependency is e−iωt throughout this
paper. The fractional boundary conditions are required on each half-plane surface. Our main goal is to
find the scattered field by this structure.

a

y 

x 

incident plane wave

E i
z

θ

l

Figure 2. The geometry of the problem.

It is necessary to define the fractional derivative before applying the FBC to the total electric
field on the surface of the half-planes. The Riemann-Liouville definition of the fractional derivative for
0 < ν < 1 is given as follows [13, 23]:

Dν
yf(y) =

1
Γ(1 − ν)

d

dy

∫ x

−∞

f (t) dt

(y − t)ν
(2)

where 0 < ν < 1.
Here, Γ(1 − ν) is a Gamma function, and the fractional derivative of f(y) is taken with respect

to y in the order of ν. After giving the general expression of the fractional derivative, it is better to
express the FBC and give a physical interpretation of the boundary condition. The FBC for the lower
half-plane is given as:

Dν
ky (Ez (x, y)) = 0, x∈ [0,∞) , y = 0 (3)

where Ez(x, y) is the total electric field on the surface of the lower half-plane.
Note that the fractional-order derivative is taken concerning ky which is a dimensionless parameter.

Keep in mind that y is the normal direction on the surface of the half-plane.
The total electric field Ez(x, y) consists of three major fields. They are the incidence wave Ei(x, y),

the scattered electric field due to the lower half-plane Es1
z (x, y), and the scattered field due to the
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upper half-plane Es2
z (x, y). The scattered field can be found by the convolution of the fractional Green

function Gν and the induced fractional current densities (f ν
1 and f ν

2 ) for each half-plane, respectively
as [13, 17, 19]:

Ez(x, y) = Es1
z (x, y) + Es2

z (x, y) + Ei
z(x, y) (4)

Here,

Es1
z (x, y) =

∞∫
0

f ν
1

(
x′) Gν

(
x − x′, y

)
dx′,

Es2
z (x, y) =

∞∫
a

f ν
2

(
x′) Gν

(
x − x′, y − l

)
dx′.

where Gν(x − x′, y − y′) = − i
4Dν

kyH
(1)
0 (k

√
(x − x′)2 + (y − y′)2 ).

To apply FBC, the representation of the Hankel’s function as the superposition of plane waves is
preferred [13, 24]. The main purpose of this fact is that the fractional derivative of the exponential
terms is easy to implement as Dν

x(eikx) = (ik)νeikx [22, 23]. Then, the Hankel function is expressed as:

H
(1)
0

(
k

√
(x − x′)2 + (y − y′)2

)
=

1
π

∞∫
−∞

e
ik

[
(x−x′)q+|y−y′|

√
1−q2

]
dq√
1 − q2

.

To find the scattered electric field of each half-plane, Eq. (4) is used and put into Eq. (3). Then, Eq. (5)
is obtained for the lower half-plane.

− i

4π
e±iπν

⎛
⎜⎜⎜⎜⎜⎜⎝

∞∫
−∞

F ν
1 (q) eikxq

(
1 − q2

)ν− 1
2 dq

+

∞∫
−∞

F ν
2 (q) e

ik
[
xq+l

√
1−q2

] (
1 − q2

)ν− 1
2 dq

⎞
⎟⎟⎟⎟⎟⎟⎠

+ (−i sin θ)ν e−ikx cos θ = 0 (5)

for x ∈ [0,∞) and y = 0.

F ν
1 (q) =

∞∫
0

f ν
1

(
x′) e−ikqx′

dx′F ν
2 (q) =

∞∫
a

f ν
2

(
x′) e−ikqx′

dx′ (6)

Eq. (6) is the Fourier transform of the fractional current densities given in Eq. (4). Note that the current
densities (f ν

1 and f ν
2 ) have only non-zero values on the corresponding surfaces. Obtaining Eq. (5) is an

important step of the study. This is the integral equation for the lower half-plane. The main purpose
is to solve the integral equations obtained from the boundary condition satisfaction for each half-plane.
With the same approach, the boundary condition on the upper half-plane will have the form as Eq. (7).

Dν
ky (Ez (x, y)) = 0, x ∈ [a,∞) , y = l (7)

Analogically, for the upper half-plane, the integral equation will be as:

− i

4π
e±iπν

⎛
⎜⎜⎜⎜⎜⎜⎝

∞∫
−∞

F ν
1 (q) e

ik
[
xq+l

√
1−q2

] (
1 − q2

)ν− 1
2 dq

+

∞∫
−∞

F ν
2 (q) eikxq

(
1 − q2

)ν− 1
2 dq

⎞
⎟⎟⎟⎟⎟⎟⎠

+ (−i sin θ)ν e−ik(x cos θ+l sin θ) = 0 (8)

for x ∈ [a,∞) and y = l.
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Let’s introduce ξ = x − a, x = (ξ + a) for Eq. (8). Then, the equation becomes:

i

4π
e±iπν

⎛
⎜⎜⎜⎜⎜⎜⎝

∞∫
−∞

eikqaF ν
1 (q) e

ik
[
(ξ)q+l

√
1−q2

] (
1 − q2

)ν− 1
2 dq

+

∞∫
−∞

eikqaF ν
2 (q) eik(ξ)q

(
1 − q2

)ν− 1
2 dq

⎞
⎟⎟⎟⎟⎟⎟⎠

=(−i sin θ)νe−ik cos θae−ik((ξ) cos θ+l sin θ) (9)

For further manipulations, the change of dummy variable is also employed for Eq. (6) as x̃ = x′ − a,
x′ = x̃ + a, and the procedure is given as:

F ν
2 (q) =

∞∫
0

f ν
2 (x̃ + a) e−ikq(x̃+a)dx̃ = e−ikqa

∞∫
0

f ν
2 (x̃ + a) e−ikqx̃dx̃ = e−ikqa

∞∫
0

f̃ ν
2 (x̃) e−ikqx̃dx̃ (10)

where f ν
2 (x̃ + a) = f̃ ν

2 (x̃).
After this point, the coupled integral equations are obtained. Then, the solution of these integral

equations is aimed. To solve these integral equations (Eqs. (5) and (9)), the approach is as follows:
The current densities on each corresponding half-plane are expressed as the summation of the

Laguerre polynomials by taking into account the edge conditions. The reason for choosing the Laguerre
polynomials is that these polynomials are defined between [0,∞) which is suitable for the geometry
of the problem. For instance, Gegenbauer or Chebyshev polynomials are preferred in the case of strip
problems.

To solve Eqs. (5) and (9), the fractional current densities are expressed as the summation of the
Laguerre polynomials with the corresponding weight function. The weight function is chosen so that
the edge condition is satisfied [19, 24, 25]. In Eq. (11), the expansion of the induced fractional current
density f ν

1 on the lower half-plane is given. Note that f1
n are the unknown coefficient that needs to be

found by using Eqs. (5) and (9).

f ν
1

( ς

k

)
= e−ςςν− 1

2

∞∑
n=0

f1
nL

ν− 1
2

n (2ς) , ς = kx (11)

The Fourier transform of Eq. (11) is given as [12]:

F ν
1 (q) =

∞∫
0

f ν
1

(
x′) e−ikqx′

dx′ =
1
k

∞∑
n=0

f1
nγν

nDν
n (q) (12)

where γν
n = Γ(n+ν+ 1

2
)

Γ(n+1) , Dν
n(q) = (iq−1)n

(iq+1)ν+n+ 1
2
.

Also for the upper half-plane, the induced fractional current density fν
2 on the upper half-plane

and its Fourier transform are given, respectively as:

f ν
2

( ς

k

)
= e−ςςν− 1

2

∞∑
n=0

f2
nL

ν− 1
2

n (2ς) , ς = kx (13)

Here,

F ν
2 (q) = e−ikqa

∞∫
0

f̃ ν
2

(
x′) e−ikqx′

dx′ =
e−ikqa

k

∞∑
n=0

f2
nγν

nDν
n (q) (14)

Putting Eqs. (12) and (14) into Eq. (5), then the first integral equation for the lower half-space will be:
I3 = I1 + I2 (15)

where,

I1 = χ

∞∫
−∞

∞∑
n=0

f1
nγν

nDν
n (q) eikxq

(
1 − q2

)ν− 1
2 dq
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I2 = χ

∞∫
−∞

∞∑
n=0

f2
nγν

nDν
n (q) ρe

ik
(
xq+l

√
1−q2

) (
1 − q2

)ν− 1
2 dq

I3 = (−i sin θ)νe−ikx cos θ

Here, χ = − i
4πk e±iπν and ρ = e−ikqa.

To solve the integral equation given in Eq. (15), some steps need to be followed. Note that the
main aim is to obtain unknown coefficients f1

n and f2
n. After that, the current densities, then, the field

distribution can be found.
First, multiplying both sides of Eq. (15) by e−ςςν− 1

2 L
ν− 1

2
n (2ς) to employ orthogonality. Then, it is

required to take an integral with respect to x in the interval of [0,∞), and finally, it is needed to use
the property [11, 13, 24] given as:

∞∫
0

xλe−pxLλ
n (cx) dx =

Γ(λ + n + 1)(p − c)n

Γ(n + 1)pλ+n+1
.

Finally, the System of Linear Algebraic Equations (SLAE) for the lower half-plane is obtained as:
∞∑

n=0

f1
nγν

nC11
nm (−1)n+m +

∞∑
n=0

f2
nγν

nC12
nm (−1)n+m = −4πkei π

2
(1−3ν)(sin θ)νDν

n (cos θ) (16)

The same procedure is applied to Eq. (9), and the SLAE for the upper half-plane is obtained as:
∞∑

n=0

f1
nγν

nC21
nm (−1)n+m +

∞∑
n=0

f2
nγν

nC22
nm (−1)n+m

= −4πkei π
2
(1−3ν)(sin θ)νDν

n (cos θ) e−ikl sin θe−ika cos θ (17)

Here,

Ci,i
nm =

∞∫
−∞

(
1 − q2

)ν− 1
2

(1 − iq)n−m−ν− 1
2

(1 + iq)n−m+ν+ 1
2

dq, i = 1, 2,

Ci,j
nm =

∞∫
−∞

Λ(q)
(
1 − q2

)ν− 1
2

(1 − iq)n−m−ν− 1
2

(1 + iq)n−m+ν+ 1
2

dq, i, j = 1, 2, i �= j,

and

γν
n =

Γ(n + ν + 1
2)

Γ(n + 1)
, Dν

n (q) =
(iq − 1)n

(iq + 1)ν+n+ 1
2

.

Note that Λ(q) = e±ikqaeikl
√

1−q2 , and in Eqs. (16) and (17), (+) sign is for i = 1 and (−) sign for i = 2.
The final expressions for the scattered electric field due to the lower and upper half-planes are

respectively as:

Es1
z =

∞∫
−∞

χF ν
1 (q)eik

(
xq+|y|

√
1−q2

)
(1 − q2)

ν−1
2 dq (+ for y > l − for y < l) (18)

Es2
z =

∞∫
−∞

χF ν
2 (q) e

ik
(
xq+|y−l|

√
1−q2

) (
1 − q2

) ν−1
2 dq (+ for y > 0 − for y < 0) (19)

where χ = − i
4πk e±iπν .
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3. NUMERICAL RESULTS

In this part, the numerical results for several cases are presented. Different values of the electrical
length (kl) among the half-planes, incidence angle, and fractional order (ν) are investigated, and the
near electric field distributions are given. The results are compared with the previous studies and
Method of Moments (MoM) [1, 26–28]. Based on the mathematical algorithms given in the theoretical
part, the program package was created in MatLab. The comparison method is chosen as MoM because
the approach for the solution of the integral equation is similar. In other words, the main purpose
is to express the current density on the scatterer in terms of predefined bases and converting integral
equations into SLAE by employing the inner product and orthogonality [27, 28]. For the Method of
Moment approach, the sub-domain basis function is chosen as a piecewise constant pulse function. For
the test function, a point matching approach is chosen.

Before presenting the experimental results, it is better to highlight the verification. First, we
consider the case when the fractional order ν = 0.01 which corresponds to the perfect electric conductor
(PEC). This is a classical case known in literature [1, 2]. The results coincide with the previous study.
Also, the study is compared with the plane wave diffraction by a half-plane [11]. Note that the study [11]
is also obtained by the Fractional Derivative Method. To compare the studies, the shift parameter a,
distance parameter l and k (wavenumber) are taken as 0, 0.001, and π, respectively (Note that k � l).
The result coincides with any fractional order. After denoting the verification of the study obtained here
with the previous studies as [1] and the half-plane problem satisfying the FBC, it is better to explain
the figures.

Figure 3 shows the near field distribution for cases ν = 0.01 and a = 0.0001 at different frequencies.
Fig. 3(a) corresponds to the normal incidence case for = π. Note that between the half-planes, we see
the standing waves. Fig. 3(b) corresponds to similar parameters. Note that only the incident angle is

(a) (b)

(c)

4

0

-4

-2 0 2 4 6 7

4

0

-4

4

0

-4

-2 0 2 4 6 7

-2 0 2 4 6 7

Figure 3. The total near field distribution (for animation, see [26]). (a) ν = 0.01, kl = π, θ = π
2 , (b)

ν = 0.01, kl = π, θ = 3π
4 , (c) ν = 0.01, kl = 3π

2 , θ = 3π
4 .
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different. As we see, some parts of the energy penetrate inside but cannot propagate at a far distance.
Fig. 3(c) shows the case when the electrical length between half-planes is kl = 3π

2 . In this case, we have
a propagating wave inside the structure. Here, the half-planes behave like a waveguide, and there exist
cut-off frequencies for different modes [27].

After that, we consider the case when ν = 1, and it corresponds to the perfect magnetic conductor
(PMC). Fig. 4 shows the near field distribution and Poynting vector distribution for the normal incidence
when kl = π [27]. As shown in the figures, the traveling wave is formed inside the structure, and it
propagates by reflecting plates. This case is also a classical case. After presenting the well-known
two cases, it is better to investigate the half-planes satisfying the fractional boundary condition with a
non-integer order between 0 and 1.

(a) (b)

4

0

-4
-2 0 2 4 6 7

4

0

-4
-2 0 2 4 6 7

Figure 4. Total near electric field (a) and Poynting vector distribution (b) at the parameters ν = 1,
kl = π, θ = π

2 (for animation see [26]).

Next, we consider the case when the fractional order ν = 0.5. The corresponding impedance value
η = −i [19, 20]. Fig. 5(a) shows the normal incidence case. Inside the structure, we have a standing
wave. Fig. 5(b) shows the same scenario for the incidence angle θ = 3π

4 . Inside the structure, there is
a traveling wave whose amplitude is higher than outside the structure. Note that this is different from
the case considered for the perfect electric and perfect magnetic conductor cases.

(a) (b)

4

0

-4
-2 0 2 4 6 7

4

0

-4
-2 0 2 4 6 7

Figure 5. Total near field distribution (for animation see [26]). (a) ν = 0.5, kl = π, θ = π
2 , (b) ν = 0.5,

kl = π, θ = 3π
4 .

We have also considered the cases when ν = 0.75 and ν = 0.25. The results are given in Fig. 6. As
can be seen, again the electric field inside the structure has a higher amplitude than the outside. Also,
the structure of the traveling wave is different from classical cases.
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(a) (b)

4

0

-4

-2 0 2 4 6 7

4

0

-4

-2 0 2 4 6 7

Figure 6. Total near field distribution (for animation see [26]). (a) ν = 0.75, kl = π, θ = 3π
4 , (b)

ν = 0.25, kl = π, θ = 3π
4 .
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(c)

Figure 7. Total near field distribution (for animation see [23]). (a) ν = 0.5, kl = π, θ = 3π
4 , a = 10,

(b) ν = 0.5, kl = π, θ = 3π
4 , a = 20, (c) ν = 0.75, kl = π, θ = 3π

4 , a = 10.
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In all previous cases, the length of the half-planes was the same and not shifted (a = 0.001). Next,
we consider the cases when a �= 0. Fig. 7 shows the near field distribution for this case. In the case of
Fig. 7(a), ν = 0.5 case is considered when the upper half-plane is shifted by a = 10. As we can see,
the amplitude of the field inside the structure is higher than outside as it was in the case of Fig. 5(b).
However, the contrast is higher here (4.36 vs 3.15). This can be explained by the fact that the electric
field easily penetrates inside because the incident field is reflected from the lower half-plane and then,
is reflected inside the waveguide. The contrast becomes even higher when we take a = 20. Then, the
maximum field value becomes 4.84. Fig. 7(c) shows the case when ν = 0.75. If we compare this final
result with Fig. 6(a) case, the structure of the field distribution changes, but the high field value is
practically the same.

All the field animations related to the results given in this article are uploaded to YouTube and
can be found at the link [26].

The FBC is the generalization of the well-known Dirichlet and Neumann boundary conditions.
Once the problem is solved for arbitrary fractional-order ν between 0 and 1 (i.e., the integral equations
are obtained for variable ν as it is done in the Formulation of the Problem Section), the numerical
experiments can be done for different fractional orders. It would be wise to summarize the section at
that point before passing through the comparison of the method with MoM. In this section, first, the
previous studies [1, 11] are highlighted, and at the limit case (l = 0.001), the results coincide. After
that, the numerical results are given for several scenarios.

(a) (b)

5

0

-5

5

0

-5
50-5 50-5

Figure 8. Comparison of total near field distributions with fractional method and method of moments
for kl = 3π

2 , θ = π
2 , a = 0.0001, (a) fractional method (ν = 0.01), (b) method of moments.

(a) (b)
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0

-5
50-5

Figure 9. Comparison of total near field distributions with fractional method and method of moment
for kl = 3π

2 , θ = π
2 , a = 2.5, (a) fractional method (ν = 0.01), (b) method of moments.
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Now, in Fig. 8, the comparison is done between the fractional derivative method and MoM with
given parameters. In that figure, there is approximately no shift between the half-planes. As you can
see, the distributions obtained by the two methods give approximately the same results.

In Fig. 9, again, the comparison of two methods for the near electric field distribution is given. In
that case, there exists a shift (a) between two half-planes. Also, the results are approximately the same.

4. CONCLUSION

In this study, the diffraction problem solution of the electromagnetic waves by a double half-plane
structure is considered. The integral boundary condition is satisfied on each half-plane surface. The
boundary condition is the generalization of the Dirichlet and Neumann boundary conditions. Once, we
solve the integral equation satisfying the integral boundary condition (fractional boundary condition),
for different values of the fractional order, the required information such as field distributions, Poynting
vector distribution, and current densities can be obtained. In this study, the theoretical part is given,
and based on it, the numerical experiments are realized. There are investigated classical cases of the
PEC and PMC, and they are compared to the intermediate cases of the fractional order. The comparison
is highlighted with previous studies. The traveling wave with the higher amplitude is observed inside the
half-planes for the intermediate fractional order, in comparison with the PEC and PMC cases. Also, the
differences between two-half planes and shifted two-half-planes are investigated, and the differences are
revealed. Then, the comparison is done with MoM. The results are found approximately the same. The
main advantage of the fractional derivative approach is that once the integral equations are obtained,
only the numerical part is repeated for different fractional orders. Therefore, the formulation of the
problem, obtaining the integral equations for each half-plane, and converting integral equations into
SLAE are provided in the most general form. Then, for different boundary conditions, only numerical
analysis is performed whereas the other methods require, again, the formulation of the problem for each
boundary condition.
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