Vol. 101
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-02-27
Near-Field Image Transmission and EVM Measurements in Rich Scattering Environment in Metal Enclosure
By
Progress In Electromagnetics Research M, Vol. 101, 139-147, 2021
Abstract
In this work we present near-field image transmission and error vector magnitude measurement in rich scattering environment in metal enclosure. We check the effect of loading metal enclosure on the performance of SDR based near-field communication link. We focus on the key communication receiver parameters to observe the effect of near-field link in presence of rich-scattering and in presence of loading with RF absorber cones. The near-field performance is measured by transmitting wideband OFDM-modulated packets containing image information. Our finding suggests that the performance of OFDM based wideband near-field communication improves when metal enclosure is loaded with RF absorbers. Near-field EVM improves when the enclosure is loaded with RF absorber cones. Loading of the metal enclosure has the effect of increased coherence bandwidth. Frequency selectivity was observed in an empty enclosure which suggests coherence bandwidth less than the signal bandwidth.
Citation
Mir Lodro, Gabriele Gradoni, Christopher Smartt, Ana Vukovic, David W. P. Thomas, and Stephen Greedy, "Near-Field Image Transmission and EVM Measurements in Rich Scattering Environment in Metal Enclosure," Progress In Electromagnetics Research M, Vol. 101, 139-147, 2021.
doi:10.2528/PIERM21010501
References

1. Shamim, M. S., N. Mansoor, R. S. Narde, V. Kothandapani, A. Ganguly, and J. Venkataraman, "A wireless interconnection framework for seamless inter and intra-chip communication in multichip systems," IEEE Transactions on Computers, Vol. 66, No. 3, 389-402, 2016.
doi:10.1109/TC.2016.2605093

2. Chen, Z. M. and Y. P. Zhang, "Inter-chip wireless communication channel: Measurement, characterization, and modeling," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 978-986, 2007.
doi:10.1109/TAP.2007.891861

3. Lodro, M., C. Smart, G. Gradoni, A. Vukovic, D. Thomas, and S. Greedy, "Near-field ber and evm measurement at 5.8 GHz in mode-stirred metal enclosure," Applied Computational Electromagnetics Society Journal, Vol. 35, No. 9, 2020.

4. Kim, H.-J., H. Hirayama, S. Kim, K. J. Han, R. Zhang, and J.-W. Choi, "Review of near-field wireless power and communication for biomedical applications," IEEE Access, Vol. 5, 21 264-21 285, 2017.
doi:10.1109/ACCESS.2017.2757267

5. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2426-2435, 2010.
doi:10.1109/TAP.2010.2048858

6. Kisseleff, S., I. F. Akyildiz, and W. H. Gerstacker, "Survey on advances in magnetic induction-based wireless underground sensor networks," IEEE Internet of Things Journal, Vol. 5, No. 6, 4843-4856, 2018.
doi:10.1109/JIOT.2018.2870289

7. Akyildiz, I. F., P. Wang, and Z. Sun, "Realizing underwater communication through magnetic induction," IEEE Communications Magazine, Vol. 53, No. 11, 42-48, 2015.
doi:10.1109/MCOM.2015.7321970

8. Guo, H., Z. Sun, and P.Wang, "Multiple frequency band channel modeling and analysis for magnetic induction communication in practical underwater environments," IEEE Transactions on Vehicular Technology, Vol. 66, No. 8, 6619-6632, 2017.
doi:10.1109/TVT.2017.2664099

9. Kim, H.-J., J. Park, K.-S. Oh, J. P. Choi, J. E. Jang, and J.-W. Choi, "Near-field magnetic induction mimo communication using heterogeneous multipole loop antenna array for higher data rate transmission," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1952-1962, 2016.
doi:10.1109/TAP.2016.2539371

10. Shin, H., M. Lee, C. Lee, and C. Park, "An RF transceiver for wireless chip-to-chip communication using a cross-coupled oscillator," Progress In Electromagnetics Research C, Vol. 92, 165-175, 2019.
doi:10.2528/PIERC19020902

11. Fu, J., P. Juyal, and A. Zajić, "Modeling of 300 GHz chip-to-chip wireless channels in metal enclosures," IEEE Transactions on Wireless Communications, Vol. 19, No. 5, 3214-3227, 2020.
doi:10.1109/TWC.2020.2971206

12. Timoneda, X., A. Cabellos-Aparicio, D. Manessis, E. Alarcón, and S. Abadal, "Channel characterization for chip-scale wireless communications within computing packages," 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS), 1-8, IEEE, 2018.

13. Fu, J., P. Juyal, and A. Zajić, "Thz channel characterization of chip-to-chip communication in desktop size metal enclosure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7550-7560, 2019.
doi:10.1109/TAP.2019.2934908

14. Mikki, S., "Theory of nonsinusoidal small antennas for near-field communication system analysis," Progress In Electromagnetics Research B, Vol. 86, 177-193, 2020.
doi:10.2528/PIERB19121104

15. Chen, X., P.-S. Kildal, C. Orlenius, and J. Carlsson, "Channel sounding of loaded reverberation chamber for over-the-air testing of wireless devices: Coherence bandwidth versus average mode bandwidth and delay spread," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 678-681, 2009.
doi:10.1109/LAWP.2009.2025149

16. Chen, X., P.-S. Kildal, and S.-H. Lai, "Estimation of average rician k-factor and average mode bandwidth in loaded reverberation chamber," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1437-1440, 2011.
doi:10.1109/LAWP.2011.2179910