1. Shamim, M. S., N. Mansoor, R. S. Narde, V. Kothandapani, A. Ganguly, and J. Venkataraman, "A wireless interconnection framework for seamless inter and intra-chip communication in multichip systems," IEEE Transactions on Computers, Vol. 66, No. 3, 389-402, 2016.
doi:10.1109/TC.2016.2605093
2. Chen, Z. M. and Y. P. Zhang, "Inter-chip wireless communication channel: Measurement, characterization, and modeling," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 978-986, 2007.
doi:10.1109/TAP.2007.891861
3. Lodro, M., C. Smart, G. Gradoni, A. Vukovic, D. Thomas, and S. Greedy, "Near-field ber and evm measurement at 5.8 GHz in mode-stirred metal enclosure," Applied Computational Electromagnetics Society Journal, Vol. 35, No. 9, 2020.
4. Kim, H.-J., H. Hirayama, S. Kim, K. J. Han, R. Zhang, and J.-W. Choi, "Review of near-field wireless power and communication for biomedical applications," IEEE Access, Vol. 5, 21 264-21 285, 2017.
doi:10.1109/ACCESS.2017.2757267
5. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2426-2435, 2010.
doi:10.1109/TAP.2010.2048858
6. Kisseleff, S., I. F. Akyildiz, and W. H. Gerstacker, "Survey on advances in magnetic induction-based wireless underground sensor networks," IEEE Internet of Things Journal, Vol. 5, No. 6, 4843-4856, 2018.
doi:10.1109/JIOT.2018.2870289
7. Akyildiz, I. F., P. Wang, and Z. Sun, "Realizing underwater communication through magnetic induction," IEEE Communications Magazine, Vol. 53, No. 11, 42-48, 2015.
doi:10.1109/MCOM.2015.7321970
8. Guo, H., Z. Sun, and P.Wang, "Multiple frequency band channel modeling and analysis for magnetic induction communication in practical underwater environments," IEEE Transactions on Vehicular Technology, Vol. 66, No. 8, 6619-6632, 2017.
doi:10.1109/TVT.2017.2664099
9. Kim, H.-J., J. Park, K.-S. Oh, J. P. Choi, J. E. Jang, and J.-W. Choi, "Near-field magnetic induction mimo communication using heterogeneous multipole loop antenna array for higher data rate transmission," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1952-1962, 2016.
doi:10.1109/TAP.2016.2539371
10. Shin, H., M. Lee, C. Lee, and C. Park, "An RF transceiver for wireless chip-to-chip communication using a cross-coupled oscillator," Progress In Electromagnetics Research C, Vol. 92, 165-175, 2019.
doi:10.2528/PIERC19020902
11. Fu, J., P. Juyal, and A. Zajić, "Modeling of 300 GHz chip-to-chip wireless channels in metal enclosures," IEEE Transactions on Wireless Communications, Vol. 19, No. 5, 3214-3227, 2020.
doi:10.1109/TWC.2020.2971206
12. Timoneda, X., A. Cabellos-Aparicio, D. Manessis, E. Alarcón, and S. Abadal, "Channel characterization for chip-scale wireless communications within computing packages," 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS), 1-8, IEEE, 2018.
13. Fu, J., P. Juyal, and A. Zajić, "Thz channel characterization of chip-to-chip communication in desktop size metal enclosure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7550-7560, 2019.
doi:10.1109/TAP.2019.2934908
14. Mikki, S., "Theory of nonsinusoidal small antennas for near-field communication system analysis," Progress In Electromagnetics Research B, Vol. 86, 177-193, 2020.
doi:10.2528/PIERB19121104
15. Chen, X., P.-S. Kildal, C. Orlenius, and J. Carlsson, "Channel sounding of loaded reverberation chamber for over-the-air testing of wireless devices: Coherence bandwidth versus average mode bandwidth and delay spread," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 678-681, 2009.
doi:10.1109/LAWP.2009.2025149
16. Chen, X., P.-S. Kildal, and S.-H. Lai, "Estimation of average rician k-factor and average mode bandwidth in loaded reverberation chamber," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1437-1440, 2011.
doi:10.1109/LAWP.2011.2179910