Vol. 96
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-01-27
A Novel and Efficient Implementation of Higher Order CPML for Truncating the Unmagnetized Plasma
By
Progress In Electromagnetics Research Letters, Vol. 96, 47-52, 2021
Abstract
A novel and efficient higher order convolutional perfectly matched layer (CPML) method is put forward and also applied to cut off the finite-difference time-domain (FDTD) computational domain full of the unmagnetized plasma. A Drude model can be used to represent the unmagnetized plasma, and the plasma can be solved by using the trapezoidal recursive convolution (TRC) method. In order to verify the validity of the presented method, a numerical example in three-dimensional computational domain is provided. The numerical example results show that the proposed formulations have better absorbing performance than the first-order CPML in terms of attenuating low-frequency and evanescent waves. Besides, by using the proposed method, computational time and memory can be reduced compared to the second order PML implemented by using the auxiliary differential equation (ADE) method.
Citation
Jianxiong Li, Zhi Li, and Xiaoming Zhao, "A Novel and Efficient Implementation of Higher Order CPML for Truncating the Unmagnetized Plasma," Progress In Electromagnetics Research Letters, Vol. 96, 47-52, 2021.
doi:10.2528/PIERL20122204
References

1. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

2. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microw. Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304

3. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Technol. Lett., Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

4. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microwave and Guided Wave Letters, Vol. 6, No. 12, 447-449, 1996.
doi:10.1109/75.544545

5. Berenger, J. P., "Numerical reflection from FDTD-PMLs: A comparison of the split PML with the unsplit and CFSPMLs," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 258-265, 2002.
doi:10.1109/8.999615

6. Correia, D. and J. M. Jin, "Performance of regular PML, CFS-PML, and second-order PML for waveguide problems," Microw. Opt. Technol. Lett., Vol. 48, No. 10, 2121-2126, 2006.
doi:10.1002/mop.21872

7. Gedney, S. D. and B. Zhao, "An auxiliary differential equation formulation for the complexfrequency shifted PML," IEEE Trans. Antenna Propag., Vol. 58, No. 3, 838-847, 2010.
doi:10.1109/TAP.2009.2037765

8. Feng, N. X. and J. X. Li, "Novel and efficient FDTD implementation of higher-order perfectly matched layer based on ADE method," J. Comput. Phys., Vol. 232, No. 1, 318-326, 2013.
doi:10.1016/j.jcp.2012.08.012

9. Li, J. X., P. Y. Wu, and H. L. Jiang, "Implementation of higher order CNAD CFS-PML for truncating unmagnetized plasma," IET Microw. Antennas Propag., Vol. 13, No. 6, 756-760, 2018.
doi:10.1049/iet-map.2018.5208

10. Liu, S., S. Q. Liu, and S. B. Liu, "Finite-difference time-domain algorithm for plasma based on trapezoidal recursive convolution technique," J. Infrared. Millim. Te., Vol. 31, No. 5, 620-628, 2010.