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A Novel and Efficient Implementation of Higher Order CPML

for Truncating the Unmagnetized Plasma

Jianxiong Li1, *, Zhi Li1, and Xiaoming Zhao2

Abstract—A novel and efficient higher order convolutional perfectly matched layer (CPML) method
is put forward and also applied to cut off the finite-difference time-domain (FDTD) computational
domain full of the unmagnetized plasma. A Drude model can be used to represent the unmagnetized
plasma, and the plasma can be solved by using the trapezoidal recursive convolution (TRC) method.
In order to verify the validity of the presented method, a numerical example in three-dimensional
computational domain is provided. The numerical example results show that the proposed formulations
have better absorbing performance than the first-order CPML in terms of attenuating low-frequency
and evanescent waves. Besides, by using the proposed method, computational time and memory can be
reduced compared to the second order PML implemented by using the auxiliary differential equation
(ADE) method.

1. INTRODUCTION

Since finite difference time domain (FDTD) method can directly settle the Maxwell’s equations in time
domain, FDTD method has been widely used in antennas, microwaves, electromagnetic imaging, and
other fields. However, due to the restriction of computer memory, FDTD computation can only be
performed in a limited region. To simulate the open problem, we need to use absorbing boundary
conditions (ABCs) at the truncated boundary of the unbounded FDTD computational domain. Among
many ABCs, perfectly matched layer (PML) [1] is a very effective and popular method for the
termination of FDTD lattices. By converting Maxwell’s equations to a complex stretching coordinate
system, the stretched coordinate PML (SC-PML) with simple implementation has been put forward [2].
However, the SC-PML formulations are inefficient to absorb evanescent waves. To overcome the
disadvantage, the convolutional PML (CPML) [3] was presented on the basis of the complex frequency
shifted PML (CFS-PML) that has a rigorous causal mode [4, 5]. However, the absorption capacity of
CFS-PML to low frequency propagation waves is poor. For the purpose of solving the above PML
problems, the higher order PML with the advantages of SC-PML and CFS-PML was proposed in [6–9].

In this paper, we propose a novel method to implement the higher order CPML, named here as the
2nd-CPML, and use it to truncate the unmagnetized plasm. The 2nd-CPML is completely independent
of the host medium. The constitutive relationship of the unmagnetized plasma can be settled by
the trapezoidal recursive convolution (TRC) method [10]. To validate the proposed formulations, a
numerical example in three-dimensional (3D) computational domain is provided. Through the results
of the numerical example, we can clearly see that the 2nd-CPML can significantly enhance the absorption
effect of the PML compared to the first order CPML, named here as the 1st-CPML [3]. Additionally,
the 2nd-CPML can reduce the computational time and memory compared with the second order PML
implemented by using the auxiliary differential equation (ADE) method, named here as the ADE 2nd-
PML [8].
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2. FORMULATIONS

In the PML regions for terminating unmagnetized plasma, in the frequency domain, the formulation
for Ex component of Maxwell’s equations can be written as follows

jωDx =
1
Sy

∂Hz

∂y
− 1
Sz

∂Hy

∂z
(1)

where Sη(η = y, z) is the 2nd-CPML variables, defined as

Sη =
(
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αη1 + jωε0

)(
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)
, η = y, z (2)

where σηϕ and αηϕ, ϕ = 1, 2, are supposed to be positive real, and κηϕ ≥ 1 is real.
After some manipulations, one obtains

1
Sη

= κη0 +
wη1

jω + vη1
+

wη2

jω + vη2
(3)
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The constitutive relation of the unmagnetized plasma with the Drude model is

Dx = ε0εr (ω)Ex (4)

where

εr (ω) = 1 +
ω2

p

−ω2 + jωυ
(5)

where ωp and υ represent the plasma frequency and the collision frequency, respectively.
Equation (4) can be solved by using the TRC method as
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where χ0 = ω2
pΔt

υ − ω2
p

υ2 · [1 − exp(−υΔt)], Δχ0 = −ω2
p

υ2 · [1 − exp(−υΔt)]2, and Δt is time step.
After transforming Equation (1) into the time domain, there is a convolution on the right side due

to the frequency dependence of Sη, namely
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where Sη(t) is the inverse Laplace transform of S−1
η given as

Sη(t) = κη0δ(t) + ζη1(t) + ζη2(t) (9)

In the above the equation, δ(t) is the unit pulse function, ζηϕ(t) = wηϕ exp(−vηϕt)u(t), where u(t)
is unit step function. Like the method in [3], by substituting Eq. (9) into Eq. (8) and introducing the
auxiliary variables, one obtains
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Through calculating the auxiliary variables recursively [3] and discretizing by the FDTD method,
one obtains
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where gηϕ = exp(−vηϕ · Δt), hηϕ = wηϕ(1−gηϕ)
vηϕΔη , and Δη is space step.

After Eq. (10) is discretized, inserting Eq. (6) into it, and after some simple manipulations, one
obtains
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where c1 = c2(1 − χ0

2 ), c2 = (1 + χ0

2 )−1, c3 = c2Δt
ε0

, and pη = c3κη0

Δη .
By using a similar method, for example, the magnetic field component Hz can also be given as
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where qη = Δtκη0

μ0Δη and ch = Δt
μ0

.
A similar method can be used to calculate other components. Like the 1st-CPML [3], and the

2nd-CPML is also fully independent of the host medium.
To compare the proposed 2nd-CPML with the ADE 2nd-PML [8] in terms of computational time,

we assume the PMLs truncate a 3D vacuum FDTD computational domain. The 2nd-CPML requires 11
multiplications and 16 additions to obtain Ex, but the ADE 2nd-PML requires 14 multiplications and
12 additions. Since the computational time of the multiplication is longer than that of the addition,
the 2nd-CPML consumes less computational time than the ADE 2nd-PML.

3. NUMERICAL RESULTS

To validate the proposed 2nd-CPML method for terminating unmagnetized plasma, a numerical example
in 3D domain is provided. The computational domain is a 30×30×30 uniform mesh domain that is fully
filled with the unmagnetized plasma with the parameters of ωp = 2π × 28.7 Grad/s and υ = 20 GHz,
and it is truncated by the 8-cell-PML. The FDTD lattice is Δx = Δy = Δz = Δ = 0.215 mm. The
time step can be easily calculated by Δt = Δ/

√
3c, where c is the speed of light, so Δt = 0.4 ps. The

observation point is set in the corner of the computational domain with the distance of a cell from three
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faces of the PML. The modulated Gaussian pulse is used as the excitation source with the parameters
of the maximum frequency of 70 GHz and the center frequency of 30 GHz, and it is placed at the middle
of the FDTD computational domain. The parameters of the 2nd-CPML are chosen as m1 = 4, α1 = 5,
σ1max = 0.1σ1opt, k1max = 1, m2 = 2, α2 = 1.1, σ2max = 1.3σ2opt, k2 max = 2, where σϕopt is given
as σϕopt = (mϕ + 1)/150πΔ. For comparison, the 1st-CPML with the parameters of m = 3, α = 0.4,
σmax = 2.0σopt, kmax = 13 and the ADE 2nd-PML with m1 = 3, α1 = 4.6, σ1max = 0.3σ1opt, k1max = 7,
m2 = 2, α2 = 1, σ2max = 1.1σ2opt, k2max = 2 are also implemented. These parameters have been
optimized by looping through a large number of different parameters to obtain the best absorption
performance.

To evaluate the performance of the PML, we use the relative reflection error in the time domain
and the reflection coefficient in the frequency domain, which are defined as

RdB (t) = 20 log10
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where FFT{} indicates the Fourier transform, and ET
x (t) and ER

x (t) represent the test solutions and
reference solutions, respectively. To obtain the reference solution, the FDTD computational domain is
expanded to 80 × 80 × 80 uniform mesh domain and terminated by the 32-cell-PML.

Figure 1 and Figure 2 show the relative reflection errors and reflection coefficients of the 1st-CPML,
2nd-CPML, and the ADE 2nd-PML, respectively. Meanwhile, we use the biggest relative reflection error
(BRRE) and biggest reflection coefficient (BRC) to evaluate the absorbing performance of the PML
in Table 1. As can be seen from Table 1, Figure 1, and Figure 2, compared with the 1st-CPML, the
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Figure 1. Relative reflection errors.

Table 1. Computation time, memory, BRRE and BRC of 1st-CPML, 2nd-CPML and ADE 2nd-CPML
to truncate unmagnetized plasma.

Time (s) Memory (MB) BRRE (dB) BRC (dB)
1st-CPML (PML = 8) 70.0 80.5 −64.46 −52.23
2nd-CPML (PML = 8) 101.56 83.6 −87.74 −75.93
2nd-CPML (PML = 4) 59.2 67.4 −68.51 −56.47

ADE 2nd-PML (PML = 8) 121.20 105.4 −80.93 −58.66
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Figure 2. Reflection coefficients.

2nd-CPML significantly improves the absorption performance including the low-frequency propagation
wave although it costs more computational time and a little more memory. However, we can also see
that when PML = 4, the 2nd-CPML can cost less time and memory to achieve a little better absorption
performance than the 1st-CPML. Compared to the ADE 2nd-PML, the 2nd-CPML has a little better
absorption performance, especially at low frequency, and consumes less computational time and memory.
In other words, the implementation of the 2nd-CPML is efficient.

4. CONCLUSION

The efficient 2nd-CPML is proposed and also applied to truncate unmagnetized plasma solved by the
TRC method. In order to validate the proposed method, a numerical example in 3D computational
domain is presented. It can be shown that the proposed algorithm has a very good absorbing effect in
truncating the unmagnetized plasma through the numerical results. Moreover, the proposed algorithm
requires less computational resource than the ADE 2nd-PML method [8].
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