Vol. 90
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-01-18
Datacube Parametrization-Based Model for Rough Surface Polarimetric Bistatic Scattering
By
Progress In Electromagnetics Research B, Vol. 90, 167-186, 2021
Abstract
A datacube parametrization-based model for bistatic scattering coefficient estimation, and pattern reconstruction is presented in this work for electromagnetic wave scattering from rough surfaces with low to high subsurface dielectric constants. A datacube of bistatic scattering coefficients is simulated using the Stabilized Extended Boundary Condition Method (SEBCM). The polarization-combined bistatic scattering patterns of the datacube are fit with elliptical (or circular) contours that are parameterized across magnitude level, center location, and major axis length in normalized wavenumber space. These parameters depend on the surface roughness, dielectric contrast, as well as the angle of wave incidence. The polarimetric bistatic scattering patterns can be reconstructed through fast interpolation over the contours and projection onto the polarization unit vectors. Good agreement is achieved between the reconstructed bistatic scattering patterns compared with the original ones in the input datacube. Though not physics-based, this datacube parametrization-based model allows quick estimation and construction of the polarimetric bistatic scattering coefficients and patterns. The model development approach can also be adopted to parametrize datacubes from simulations with other configurations or targets, e.g., surface with different correlation functions, multilayer surfaces, surface covered with vegetation, etc.
Citation
Xueyang Duan, and Mark S. Haynes, "Datacube Parametrization-Based Model for Rough Surface Polarimetric Bistatic Scattering," Progress In Electromagnetics Research B, Vol. 90, 167-186, 2021.
doi:10.2528/PIERB20120801
References

1. Franceschetti, G., M. Migliaccio, D. Riccio, and G. Schirinzi, "Saras: A Synthetic Aperture Radar (SAR) raw signal simulator," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 1, 110-123, 1992.
doi:10.1109/36.124221

2. Nouvel, J.-F., A. Herique, W. Kofman, and A. Safaeinili, "Radar signal simulation: Surface modeling with the facet method," Radio Science, Vol. 39, No. 1, 1-17, 2004.
doi:10.1029/2003RS002903

3. Gerekos, C., A. Tamponi, L. Carrer, D. Castelletti, M. Santoni, and L. Bruzzone, "A coherent multilayer simulator of radargrams acquired by radar sounder instruments," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 12, 7388-7404, 2018.
doi:10.1109/TGRS.2018.2851020

4. Alessi, S., F. De Acutis, G. Picardi, and R. Seu, "Surface bistatic scattering coe±cient by means the facet model radar altimetry application," 1996 26th European Microwave Conference, Vol. 1, 337-340, IEEE, 1996.
doi:10.1109/EUMA.1996.337585

5. Zhang, M., H. Chen, and H.-C. Yin, "Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: Theoretical model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 1967-1975, 2011.
doi:10.1109/TGRS.2010.2099662

6. West, J. C., R. K. Moore, and J. C. Holtzman, "The slightly-rough facet model in radar imaging of the ocean surface," International Journal of Remote Sensing, Vol. 11, No. 4, 617-637, 1990.
doi:10.1080/01431169008955045

7. Garcia-Fernandez, A. F., O. A. Yeste-Ojeda, and J. Grajal, "Facet model of moving targets for ISAR imaging and radar back-scattering simulation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 3, 1455-1467, 2010.
doi:10.1109/TAES.2010.5545200

8. Williams, K. L. and D. R. Jackson, "Bistatic bottom scattering: Model, experiments, and model/data comparison," The Journal of the Acoustical Society of America, Vol. 103, No. 1, 169-181, 1998.
doi:10.1121/1.421109

9. Dahl, P. H., "On bistatic sea surface scattering: Field measurements and modeling," The Journal of the Acoustical Society of America, Vol. 105, No. 4, 2155-2169, 1999.
doi:10.1121/1.426820

10. Fung, A. K., C. Zuffada, and C.-Y. Hsieh, "Incoherent bistatic scattering from the sea surface at L-band," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 5, 1006-1012, 2001.
doi:10.1109/36.921418

11. Khenchaf, A., "Bistatic scattering and depolarization by randomly rough surfaces: Application to the natural rough surfaces in X-band," Waves in Random Media, Vol. 11, No. 2, 61-90, 2001.
doi:10.1088/0959-7174/11/2/301

12. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from three-dimensional layered rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 8, 2102-2114, 2006.
doi:10.1109/TGRS.2006.872140

13. Johnson, J. T. and J. D. Ouellette, "Polarization features in bistatic scattering from rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 3, 1616-1626, 2013.
doi:10.1109/TGRS.2013.2252909

14. Voronovich, A., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves in Random Media, Vol. 4, No. 3, 337-368, 1994.
doi:10.1088/0959-7174/4/3/008

15. Chou, H.-T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method," Radio Science, Vol. 33, No. 5, 1277-1287, 1998.
doi:10.1029/98RS01888

16. Kapp, D. A. and G. S. Brown, "A new numerical method for rough-surface scattering calculations," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 711, 1996.
doi:10.1109/8.496258

17. Jandhyala, V., E. Michielssen, S. Balasubramaniam, and W. C. Chew, "A combined steepest descent-fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, 738-748, 1998.
doi:10.1109/36.673667

18. Fung, A., W. Liu, K. Chen, and M. Tsay, "An improved iem model for bistatic scattering from rough surfaces," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 5, 689-702, 2002.
doi:10.1163/156939302X01119

19. Wu, T.-D., K.-S. Chen, J. Shi, H.-W. Lee, and A. K. Fung, "A study of an AIEM model for bistatic scattering from randomly rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 9, 2584-2598, 2008.
doi:10.1109/TGRS.2008.919822

20. Duan, X. and M. Moghaddam, "3-D vector electromagnetic scattering from arbitrary random rough surfaces using stabilized extended boundary condition method for remote sensing of soil moisture," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 1, 87-103, 2011.
doi:10.1109/TGRS.2011.2160549

21. Zribi, M., N. Baghdadi, N. Holah, O. Fafin, and C. Guerin, "Evaluation of a rough soil surface description with asar-envisat radar data," Remote Sensing of Environment, Vol. 95, No. 1, 67-76, 2005.
doi:10.1016/j.rse.2004.11.014

22. Duan, X. and M. Haynes, "Supporting data for the datacube parametrization-based model for rough surface polarimetric bistatic scattering,", 2020, [Online], available: http://dx.doi.org/10.21227/hg2q-b864.