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Datacube Parametrization-Based Model for Rough Surface
Polarimetric Bistatic Scattering

Xueyang Duan* and Mark Haynes

Abstract—A datacube parametrization-based model for bistatic scattering coefficient estimation, and
pattern reconstruction is presented in this work for electromagnetic wave scattering from rough surfaces
with low to high subsurface dielectric constants. A datacube of bistatic scattering coefficients is
simulated using the Stabilized Extended Boundary Condition Method (SEBCM). The polarization-
combined bistatic scattering patterns of the datacube are fit with elliptical (or circular) contours that are
parameterized across magnitude level, center location, and major axis length in normalized wavenumber
space. These parameters depend on the surface roughness, dielectric contrast, as well as the angle of wave
incidence. The polarimetric bistatic scattering patterns can be reconstructed through fast interpolation
over the contours and projection onto the polarization unit vectors. Good agreement is achieved between
the reconstructed bistatic scattering patterns compared with the original ones in the input datacube.
Though not physics-based, this datacube parametrization-based model allows quick estimation and
construction of the polarimetric bistatic scattering coefficients and patterns. The model development
approach can also be adopted to parametrize datacubes from simulations with other configurations
or targets, e.g., surface with different correlation functions, multilayer surfaces, surface covered with
vegetation, etc..

1. INTRODUCTION

In this work, we present a method for efficiently predicting the bistatic polarimetric scattering coefficients
for random rough surface over a range of surface roughnesses, dielectric properties, and incident and
scattering directions. This method is based on a datacube-derived analytical model of bistatic scattering
coefficients. The model itself, or its extrapolation, can be applied to predict bistatic scattering
coefficients in forward modeling and performance evaluation of bistatic or multistatic radar remote
sensing of natural targets. The datacube approach here is general enough that it can be expanded or
adopted to build similar bistatic scattering models from datacubes simulated with other configurations
of interest.

The need for fast generation of bistatic polarimetric scattering coefficients and patterns is motivated
by the problem of simulating radar scattering from electrically-large surfaces which exhibit both large-
scale and small-scale roughness. For electrically-large surfaces, flat facets can be used to capture the
scattering effects of large-scale roughness and/or topography and have been used for a number of
applications including general synthetic aperture radar [1], low-frequency radar sounding and multi-
layer simulation [2, 3], scattering from ocean surfaces and altimetry [4–6], and moving targets [7]. For
homogenous scenes, facet orientation and size can be used and easily augmented with basic backscatter
σo curves to simulate incoherent scattering due to small scale roughness. However, for inhomogeneous
scenes, or more complicated cases of bistatic or multi-layer transmission simulations, storing and
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sampling the full bistatic scattering matrix can be computational expensive. In addition, we desire
to reproduce the Rayleigh scattering statistics of the incoherent scattering component. The problem
we focus on in this work is not the large-scale performance of aggregating facet echoes, but a way to
quickly and efficiently predict statistically accurate bistatic polarimetric scattering coefficients, in order
that they can be more effectively used with general radar simulators.

To-date, many computational electromagnetic models are capable of calculating bistatic scattering
coefficients from rough surfaces exist, including both analytical and numerical methods. The analytical
solutions are widely used in bistatic scattering studies, including the Kirchhoff and perturbation
approximation [8–11], the small perturbation method [12, 13], and the small slope approximation [14].
These analytical methods can quickly calculate scattering coefficients but are valid only for relatively
smooth surfaces. On the other hand, fully numerical solutions, including the method of moments [15–17],
the integrated equation method (IEM) [18], and the advanced IEM [19], are able to compute bistatic
scattering coefficients for any roughness, but at a price of much greater computational complexity.
In this work, we use the stabilized extended boundary condition method (SEBCM) [20] to simulate
the datacube of bistatic scattering coefficients in all directions as a function of surface roughness and
dielectric properties. This method has much higher computational efficiency than the fully numerical
methods, and gives accurate full wave solutions to the vector scattered fields from surfaces with large
roughnesses (k0h < 1.0). In particular, this method computes the rough surface scattering from all
bistatic combinations at once, which makes this method a preferred one for bistatic scattering study. A
Monte Carlo process has been carried out to simulate a hundred surface realizations for each roughness-
dielectric configuration to create the datacube of bistatic scattering coefficients.

The goal is to parametrize the simulated datacube so that for any given combination of surface
roughness and subsurface dielectric, we can quickly obtain the bistatic scattering coefficients at all
incident and scattered directions of interest, for both magnitude and phase. As the phase of the
scattering coefficient is a uniformly distributed random variable, our parametrization is focused on the
scattering coefficient magnitude, which is a random variable with Rayleigh distribution. The scale
factor of the Rayleigh distribution can be uniquely determined by the mean of the scattering coefficient
magnitudes from the Monte Carlo process. In this work, we have concentrated on building a model for
bistatic scattering when the incident wave reflects from a medium with low dielectric permittivity to a
medium with high dielectric permittivity.

After combining the two scattering components projected onto H- and V -polarizations, our
parametrization is built on the observation that the average bistatic scattering patterns can be
represented reasonably well by a group of elliptical contours in the normalized wavenumber space. These
elliptical contours can further be approximated by circular contours. The contours can be described
by their magnitude levels, center locations, and major axis lengths. These parameters depend on the
surface roughness properties, dielectric contrast, and angle of wave incidence. By parametrizing these
dependencies and fitting for the parameters as a function of surface properties and direction of wave
incidence, the polarimetric bistatic scattering patterns can then be reconstructed through interpolation
over the contours and projection onto the polarization unit vectors.

Bistatic scattering patterns reconstructed from the datacube parametrization using this method
show good agreement with the simulated patterns over a majority of surface configurations.
Reconstruction RMSEs have been evaluated and are presented with respect to roughness, dielectric
contrast, and angle of incidence, which help to inform the reconstruction error when using the model
for bistatic coefficient estimation for the cases of interest. On average, we found that the reconstruction
RMSE increases as the angle of incidence gets closer to the grazing angle. RMSE is also larger in
the reconstructed V V patterns than those in the HH and the HV patterns, which have averaged
RMSE ranging from 2 to 3.5 dB. Though not physics-based, the datacube parametrization-based model
presented here allows quick reconstruction of the polarimetric bistatic scattering coefficients. This
approach can also be applied to parametrize bistatic scattering datacubes from simulations of other
configurations or targets, e.g., surfaces with different correlation functions, multilayer media, surfaces
covered with vegetation, etc.

The paper is organized as follows: Section 2 describes the approach of datacube simulation and
parametrization; Section 3 presents the pattern reconstruction process and results, as well as RMSE
evaluation; finally, Section 4 concludes this paper with further discussion and future work.
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2. DATACUBE SIMULATION AND PARAMETRIZATION APPROACH

2.1. Datacube Simulation

The Stabilized Extended Boundary Condition Method (SEBCM) [20] is used in this work to simulate
the bistatic scattering coefficient datacubes. For each rough surface realization, this model is capable
of computing the bistatic polarimetric scattering matrix Smn

pq (θs, φs; θi, φi) as a function of the above-
and the below-surface dielectric constants, and the surface roughness described by the root-mean-square
height h and the surface correlation length l. Let the numbers ‘1’ and ‘2’ note the media above and
below the surface, respectively, the subscript m (m = 1 or 2) notes the medium of observation, and
the subscript n (n = 1 or 2) notes the medium of incidence. The superscripts p and q (p, q = H or V)
note the polarization of the scattered and the incident wave, respectively. The exponential correlation
function with its spectral density shown in Eq. (1) and Eq. (2) is used to generate random rough surfaces
in this work. The exponential correlation appears to better match experimental data [21] than Gaussian
correlation functions. Distances in the spatial domain and the wavenumber domain are noted by r̄⊥
and k̄⊥, respectively.

C(r̄⊥) = exp
(
−|r̄⊥|

l

)
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h2l2

2π
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⊥l2
) 3
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The surface parameters, their ranges, and step sizes that are simulated and therefore sample the
datacube are listed in Table 1. Note that although the bistatic scattering matrix contains incidence over
all azimuth directions (i.e., φi from 0 to 2π), we only need to analyze the bistatic scattering patterns
excited by the incidence from one azimuth direction (φi = 0 in this work), because the correlation
function is isotropic. The surface correlation length l is fixed to be 10 times of the surface RMS height
h, which is the typical value used in modeling scattering from ground. For each surface configuration,
a Monte Carlo process of 100 surface realizations was computed using the JPL High Performance
Computing (HPC) resource. Roughly 165,000 CPU hours were required for the datacube generation.

Table 1. Value range of simulation parameters.

parameters start value step value stop value
RMS height in terms of wavelength in free space h/λ0 0.01 0.01 0.1

real part of dielectric constant in medium 1 ε
(0)
r 1 1 10

imaginary part of dielectric constant in medium 1 ε
(0)
i 0.01 0.01 0.1

real part of dielectric constant in medium 2 ε
(1)
r 1 1 10

imaginary part of dielectric constant in medium 2 ε
(1)
i 0.01 0.01 0.1

Figure 1 shows an example of the averaged bistatic scattering patterns from one surface
configuration (rms height of 0.7 · λ0 and lossless medium with ε

(0)
r = 1 and ε

(1)
r = 3) for one angle

of incidence. Figure 2 shows the magnitude and phase statistics for one scattering direction. As
expected, among the 100 realizations from the Monte Carlo process, the magnitude and the phase of
the scattering coefficients at a given scattering direction follow a Rayleigh distribution and uniform
distribution, respectively. Therefore, given the mean of the bistatic scattering pattern, a realization
of the magnitude of the scattering coefficient in any direction can be obtained as a Rayleigh random
variable. This implies that, in effect, we are treating the total power as being composed of strictly
incoherent energy. The analytical model to reconstruct the bistatic scattering pattern in the upper
medium above the surface, i.e., S11, is developed below.
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Figure 1. Bistatic scattering pattern example: RMS height = 0.07·λ0, lossless media above and below
the surface with ε

(0)
r = 1 and ε

(1)
r = 3.
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The first step to parametrize the datacube is to parametrize the bistatic scattering patterns shown
in Figure 1. Observing the patterns, there are two ‘irregular’ features making pattern parametrization
difficult: 1) bipolar-like patterns due to projecting the scattered energy to polarized components,
resulting in dips along the axis where the scattering polarization is perpendicular to the incident
polarization; and 2) the specular components in the co-polarization scattering patterns, which are
prominent and outlier-like for surfaces with small to medium roughness. To facilitate modeling, we first
combine the H- and V -polarized scattering patterns from the Monte Carlo simulations and average them
over all realizations, using Eq. (3) and Eq. (4), where N is the number of realizations. The polarization-
combined patterns can be viewed as the energy patterns scattered from the rough surface in responding
to the H-polarized or the V -polarized incidence. With the model we developed in this work, we can
reconstruct the polarization-combined patterns for the given surface roughness and dielectric properties.
The polarized patterns are computed by splitting the energy of the polarized-combined patterns based
on the projection of the outgoing and incoming polarizations. This is an approximation that is discussed
further in Section 3.

Next, we treat the specular scattering coefficients as outliers by removing them from the
polarization-combined patterns and replacing them with the average of the scattering coefficients of
the adjacent directions, using Eq. (5) and Eq. (6). Since the specular scattering coefficients have been
calculated accurately by the SEBCM, we retain them in a look-up table [22], which takes very small
storage space compared to the datacube. They can be inserted back to the reconstructed bistatic
patterns through interpolation.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Scattering distribution example at one scattering direction. Left: scattering coefficient
magnitudes follow a Rayleigh distribution; Right: scattering coefficient phases follow uniform
distribution.

2.2. Pattern Fitting

It is observed that, in Figures 3(a) and (b) for the H-pol and the V -pol incidences respectively, the
polarization-combined bistatic patterns can be approximated by a group of nested contours at the
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Bistatis scattering pattern analysis example for a case with rms height of 0.07λ0, ε
(0)
r = 1,

ε
(1)
r = 3, and incident angle of 19.28◦: (a) and (b) are polarization-combined patterns after specular

coherence removal for H and V incidence, respectively; (c) and (d) are contour approximation of the
patterns in (a) and (b); (e) and (f) are ellipse fitting of the contours in (c) and (d), with red circles
marking the ellipses and blue triangles marking the center of the ellipses.
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discrete magnitude levels as shown in Figures 3(c) and (d). These contours are well-approximated by
ellipses as shown in Figures 3(e) and (f). Each elliptical contour can be described by five parameters,
which are its magnitude level, center in the kx- and the ky-direction relative to the origin of the
normalized k-space, and its elliptical major and minor axis lengths in the normalized k-space. These
parameters vary as a function of the surface roughness, surface dielectric contrast, and incident angle.
By further fitting the dependence of these parameters across the surface properties and incident angle,
we can build a model consisting of a set of analytical and look-up functions. The model can then be
quickly run in reverse, so that, given the rough surface properties, medium dielectric, and the incident
angle, we are able to reconstruct the ellipses and form the pattern contours, thereby reconstructing the
pattern and compute the average bistatic scattering coefficient in the scattering direction of interest
quickly.

We also reduce the number of elliptical parameters from five to three based on two observations.
First, as seen in Figures 3(e) and (f), the center shift (marked by blue triangles) happens generally
along the incident direction, i.e., within the incidence plane, which is physically intuitive. Therefore,
we assume that the center shift is always zero in the ky-direction. Second, by examining the axes of
ellipses resulting from an initial fitting of the S11 polarization-combined patterns, we find that their
major and minor axes are nearly equal at all incident angles for V -pol incidence and at lower incident
angles for H-pol incidence, as shown in Figure 4. Therefore, we assume from the start that the major

(a) (b)

(c) (d)

Figure 4. Ellipse axis length comparison for S11
h ((a) and (b)) and S11

v ((c) and (d)): (a) and (c) are
scatter plots of major axis length vs. minor axis length; (b) and (d) are ellipse flattening histograms.
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and minor axes of the ellipses are equal in length, and so the contours are simply approximated as
circles. Figures 4(b) and (d) show the histograms of ellipse flattening, which is defined as the length
difference between the major and minor axes over the major axis length. Additionally, at near grazing
incident angles, the polarization-combined pattern of H-pol incidence becomes bipolar and cannot be
approximated by nested ellipses any more. Addressing the bipolar pattern is not in the scope of this
work.

With those two assumptions, the three parameters describing each elliptical (or circular) contour
are its contour magnitude level L, in-plane center shift ∆, and its major axis length (or radius) A. These
three parameters do not vary independently from one another, therefore we require one of the three
parameters to serve as a reference for the other two parameters, so that the three parameters can be
linked to describe a group of contours that form a pattern. We chose the contour magnitude level in dB
as the reference. As observed in the scattering pattern, the range of the contour levels, which is confined
by upper and lower bounds, depends on both the surface properties and the incident angle. Therefore,
we first model the bounds of the level range as a function of the incident angle; then next model the
coefficients of the function with respect to the surface properties. The contour radii and their center
shifts are then modeled with respect to the normalized contour level as well as the incident angles
as analytical functions, the coefficients of which are fitted as functions of the surface properties. In
summary, the fitting procedure uses a nested parametrization that begins with the normalized contour
levels described next.

2.2.1. Modeling the Contour Level Bound

The upper and lower level bounds (in dB) of the H-pol and V -pol incidences have generally an
exponential dependence on the sine of the incident angle (i.e., sin θi), as shown in Figure 5 for example.
This exponential dependence can be expressed in the form of Eq. (7). In the cases of the upper
level bound of the V -pol incidence (Figure 5(b)) and the lower level bound of the H-pol incidence
(Figure 5(c)), the level increases as the incident angle decreases and approaches zero, which can be
expressed by an exponential function as well. Hence, for the lower level bound of the H-pol incidence
and the upper level bound of the V -pol incidence, a pair of exponential functions are used in two sections
to capture the level dependence on incident angle. We use θbreak to note the break point between the
two sections.

L(dB) = aL · exp (bL · sin θi) + cL (7)

To facilitate the expression of the dependence of the coefficients aL, bL, and cL in Eq. (7) on the
surface properties, we introduced here the effective surface roughness heff and the dielectric contrast
s. The effective surface roughness heff is defined as the roughness per wavelength in the medium as

heff = h0 ·
√

ε
(0)
r , where h0 is the free space rms height per free space wavelength. The dielectric contrast

s is defined as s = (ε(1)
r − ε

(0)
r )/(ε(1)

r + ε
(0)
r ). Because we only model media with ε

(0)
r < ε

(1)
r , the dielectric

contrast is here always positive, s > 0.
Fitting the coefficients aL, bL, and cL of the exponential functions (in the form of Eq. (7)) with

respect to the surface roughness and dielectric properties is performed for the four bounds individually as
presented below. Overall, the coefficient aL for all level bounds, except the section where θinc < θbreak

for the lower level bound of the H-pol incidence and the upper level bound of the V -pol incidence,
shows dependence on both the surface roughness and dielectric contrast, and the dependence can be
approximately separated. Dependence of aL on roughness can be expressed by an analytical form in
Eq. (8).

aL = q · exp
(
a

(1)
L · heff

)
+ a

(2)
L (8)

where coefficients a
(1)
L and a

(2)
L are functions of the dielectric contrast. They can be approximated by

either an exponential function in Eq. (9) or a linear function in Eq. (10).

ξ = ξ1 · exp (ξ2 · s) + ξ3 (9)
ξ = ξ1 · s + ξ2 (10)
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(a) (b)

(c) (d)

Figure 5. Fitting the upper bound ((a) and (c)) and the lower bound ((b) and (d)) of the circular
contour levels as a function of incident angle (example of rms height of 0.06λ0). In the case of the lower
bound fitting for H-pol incidence and the upper bound fitting for V -pol incidence, two-section fitting
is used.

Table 2 lists the values and formulas used for computing the above coefficients. In the case of two-
section functions for the lower level bound of the H-pol incidence and the upper level bound of the
V -pol incidence, coefficient a for the section where θinc < θbreak can be approximated as a constant,
values of which are reported in Table 2 as well.

The coefficient bL in Eq. (7) mainly depends on the dielectric contrast and has little dependence
on the surface roughness. Its dependence on the dielectric contrast can be expressed analytically as
Eq. (11) and does not vary significantly between the four bounds.

bL = 9 · s + 12.5 (11)

The coefficient cL depends on both the surface roughness and the dielectric contrast. Its dependence
in some cases, e.g., for the upper bound of the H-pol incidence (Figure 5(a)) and the lower bound of
the V -pol incidence (Figure 5(f)), can potentially be approximated by analytical functions. However,
for lower bound of H-pol and upper bound of V -pol, which need two-section expressions, analytical
approximation has large residual error, especially for the smaller incidence angles. Hence, for better
accuracy, instead of using analytical functions, we use look-up tables [22], which are directly formed
through interpolation of the datacube. Figures 6(a) and (f) show the dependence of the coefficient cL

in Eq. (7) on the roughness and the dielectric contrast for the upper bound of H-pol incidence and
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Table 2. Formula and coefficients for computing coefficient a in Eq. (7).

upper bound lower bound upper bound lower bound

H-pol inc H-pol inc V-pol inc V-pol inc

two-section formula of Eq. (7) no yes yes no

coefficient aL for

formula of aL

coefficient q

cocoefficient a
(1)

L

formula of a
(1 )

L

coefficient ξ1

coefficient ξ 2

coefficient ξ 3

coefficient a
(2)

L

formula of a
(2)

L

coefficient ξ 1

coefficient ξ 2

all θ inc

Eq. (8)

-18.4472

Eq. ( 9)

- 0.5278

4.9727

-7.9231

Eq. (10)

- 38.9105

- 61.8084

θ inc  θbreak

Eq. (8)

- 8.3745

Eq. (10)

-19.7253

- 9.0144

(NA)

Eq. (10)

- 23.2616

- 83.5696

Eq. (8)

-18.9565

Eq. (9)

-95.1705

0.1577

92.0372

Eq. (10)

- 48.4865

- 57.2051

all θ inc

Eq. (8)

- 7.6905

Eq. (9)

-7.1549

2.2346

-1.5924

Eq. (10)

- 20.1584

- 82.8580

coefficient aL for

coefficient aL

(NA)

(NA)

<  

 - 2.7541 × 10 - 6

<

- 2.3044 × 10 - 6

(NA)

(NA)

≥ θ inc  θbreak≥

θ inc θbreak θ inc θbreak

the lower bound of V -pol incidence, respectively. For the lower bound of H-pol incidence, Figure 6(b)
shows the coefficient cL of its exponential function section where θinc > θbreak, and Figure 6(c) shows
the coefficient cL for the section where θinc < θbreak. Similarly, Figures 6(d) and (e) show the coefficient
cL of the two-section function of the upper bound of V -pol incidence.

2.2.2. Modeling the Contour In-Plane Center Shift

The center shifts within the incidence plane of the elliptical (or circular) contours are mainly driven
by the incident angle. Figure 7 shows an example of the in-plane center shifts with respect to the
normalized contour level LN, which is the contour level normalized by the lower bound for individual
incident angles at the given surface properties. For each incident angle, the curves in Figure 7 shows the
contour center moving from roughly zero to the point of projecting the normalized specular k-vector
to the normalized (kx, ky) plane. At small roughnesses, the centers of the contours remain around
zero in the normalized (kx, ky) plane; as the surface roughness increases, the range of the contour level
increases and the center of the high level contour gets closer to the specular direction. Hence, as the
surface roughness increases, the curves extend to higher contour level regime with little change in their
shape. The impact of the dielectric contrast on the in-plane center shift was found to be negligible.

To model these curves, we again fit them with the exponential function of the form in Eq. (12) for
each incident angle. At large roughnesses, it is observed that the center shift increases slowly when the
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(a) (b)

(c) (d)

Figure 6. Dependence of the coefficient c on the effective roughness and the dielectric contrast, from
fitting the bounds of the circular contour levels as a function of incident angles [22]: (a) coefficient c
from fitting the upper level bound of H-pol incidence; (b) and (c) coefficient c from fitting the lower
level bound of H-pol incidence; (d) and (e) coefficient c from fitting the upper level bound of V -pol
incidence; (f) coefficient c from fitting the lower level bound of V -pol incidence.

normalized contour level is larger than a threshold level LT = 7 dB. Hence, we combine two sections of
exponential functions to fit the curve more accurately.

∆ = a∆ · exp (b∆ · LN) + c∆ (12)
The coefficient a∆ and b∆ depend only on the incident angle, and have little dependence on surface
roughness. The coefficient a∆ for the H-pol incidence as found to be,{

a∆,h = −0.0393 · θinc + 0.1026, for LN < LT

a∆,h = −0.0064 · θinc + 0.0151, otherwise
(13)

and for the V -pol incidence,{
a∆,v = −0.0242 · θinc + 0.0651, for LN < LT

a∆,v = −0.0380 · θinc + 0.0449, otherwise
(14)
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Figure 7. Fitting the elliptical contour center shift as a function of normalized contour level: example
shown for rms height of 0.07λ0 and ε(1) = 9. Two-section fitting is needed with break point at LT = 7 dB.

The coefficient b∆ can be expressed by Eq. (15) for both the H-pol and V -pol incidences.
b∆,h = b∆,v = 0.2406 · θinc + 0.0612 (15)

The coefficient c∆ in Eq. (12) are kept as look-up functions with respect to incident angle and surface
roughness, and are plotted in Figure 8. Models of all coefficients depend on the angle of incidence; only
the coefficient c∆ reflects the slight dependence on the surface roughness.

2.2.3. Modeling the Elliptical Contour Major Axis Length (or the Circular Contour Radius)

The major axis lengths of the elliptical contours, or the radii of the simplified circular contours, are
mainly driven by the surface roughness, and their dependence on the normalized contour level LN also
depends on the angle of incidence. The effect of surface dielectric contrast has mostly been captured by
the contour level models. Shown in Figure 9 for example, the major axis length is plotted with respect
to the normalized contour level for each available incident angle, to which we fit an exponential function
in the form of Eq. (16).

A = aA · exp (bA · LN) + cA (16)
Both the coefficients aA and cA vary largely as surface roughness or incident angle changes, while

the coefficient bA has little variation as a function of surface roughness, and can be expressed by a linear
function of incident angle as

bA = 0.0902 · θinc + 0.1246 (17)
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(a) (b)

(c) (d)

Figure 8. Dependence of the coefficient c on the roughness and the incident angle, from fitting the
center shifts of the circular contours as a function of normalized contour level [22]: (a) and (b) for H-pol
incidence; (c) and (d) are for V -pol incidence.

For coefficients aA and cA, their dependence on the surface roughness and the angle of incidence can
be approximately separated. We first fit their dependence on the incident angle using the 2nd order
polynomial function as shown in Eq. (18), where ξA represents aA or cA.

ξA = ξ
(2)
A · θ2

inc + ξ
(1)
A · θinc + ξ

(0)
A (18)

The polynomial coefficients are further fitted with higher order polynomial function of the surface
roughness heff as

ξ
(n)
A = p4 · h4

eff + p3 · h3
eff + p2 · h2

eff + p1 · heff + p0 (19)

where n = 0, 1, 2. The quartic function coefficients for a
(n)
A and c

(n)
A are listed in Table 3 and Table 4,

respectively.
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Figure 9. Fitting the major axes of the elliptical contours as a function of normalized contour level.

Table 3. Coefficient values of quartic functions for a
(2)
A , a

(1)
A , and a

(0)
A for H-pol and V -pol incidence.

Coefficient p4 p3 p2 p1 p0

a
(2)
A,h 36.5520 −15.2655 −8.6889 1.5809 −0.2739

a
(2)
A,v 269.4968 −195.5572 40.3816 −2.6855 −0.0780

a
(1)
A,h 208.2550 −188.3767 −78.9353 −9.9852 0.8031

a
(1)
A,v −116.3462 27.7872 22.4430 −5.1314 0.4474

a
(0)
A,h −534.5934 415.0397 −124.7737 14.3350 −0.7864

a
(0)
A,v −618.1680 486.9267 −138.1610 15.4456 −0.7741

3. BISTATIC SCATTERING PATTERN RECONSTRUCTION AND RESULTS

Reconstruction of the bistatic scattering patterns can be done through the process diagrammed in
Figure 10. The three green boxes mark reconstruction of the contour level range, the contour center
location shifts, and the contour radii through the core models described in Section 2.2.1, 2.2.2, and 2.2.3.
In the reconstruction process, the contour level bounds are first computed from the input parameters,
which are again the polarization of the incidence field (H-pol or V -pol), incident angle θinc, surface rms
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Table 4. Coefficient values of quartic functions for c
(2)
A , c

(1)
A , and c

(0)
A for H-pol and V -pol incidence.

Coefficient p4 p3 p2 p1 p0

c
(2)
A,h −35.8565 34.3756 −5.3137 2.0069 0.3279

c
(2)
A,v 577.3304 −223.5262 15.7901 1.4796 0.0071

c
(1)
A,h 87.8210 14.4259 −37.2507 4.0670 −0.8097

c
(1)
A,v −513.6674 312.9912 −83.5511 9.5642 −0.3889

c
(0)
A,h 398.3191 −373.1519 130.9803 −16.3038 1.7070

c
(0)
A,v 754.0062 −602.3096 174.4451 −19.7744 1.6968

Figure 10. Flow chart of bistatic scattering pattern reconstruction.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. One example of comparison of the reconstructed and the simulated polarimetric bistatic
scattering patterns of the HH, V V , and HV components (surface rms height hrms = 0.07 ·λ0, dielectric
constants are ε(0) = 1 and ε(1) = 5 for above and below the surface, respectively. The incident
angle is about 40◦): (a)–(c) are the original scattering patterns simulated using SEBCM; (d)–(f) are
reconstructed scattering patterns; (g)–(i) are the differences by subtracting the reconstructed patterns
from the original patterns. The averaged differences are 1.94 dB in HH, 2.66 dB in HV , and 3.04 dB in
V V .

height hrms, and dielectric constants above (ε(1)) and below (ε(2)) the rough surface. An equally-spaced
level set (in dB) is then created ranging from the contour level lower bound to the upper bound, which is
then one of the inputs to the reconstructions of the contour center location shifts and the contour radii.
Together with the above mentioned input parameters, the contour center shifts and radii are computed
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relative to the (k̃x, k̃y) plane in the normalized k-space, i.e., k̃x = sin θs cos φs and k̃y = sin θs sin φs.
Given the scattering directions of interest in terms of (θs, φs), we can construct the (k̃x, k̃y) grid

in the normalized k-space and recreate the circular contours knowing their levels, center locations,
and radii. Interpolation is then applied to further smooth the pattern. Splitting the combined
scattering pattern to the H-pol and the V -pol components cannot be rigorously calculated by the
current model, which requires additional information on energy ratio between polarizations to be
parametrized. Instead, the current model simply projects the outgoing scattering polarization vectors
to the incident polarization vector to further decompose the scattering coefficients to the H-pol and
the V -pol components. Thereby, the polarimetric bistatic scattering patterns S11

hh(θs, φs; θi, φi) and
S11

vh(θs, φs; θi, φi) are reconstructed for the H-pol incidence, and S11
vv(θs, φs; θi, φi) and S11

hv(θs, φs; θi, φi)
for the V -pol incidence. The scattering coefficients at the specular directions are then replaced by
the values from interpolation of the specular coefficient look-up table [22]. For evaluating the pattern

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. RMSE between the original and the reconstructed bistatic patterns as a function of the
contrast and the effective rms height: 1) (a) to (c) are at small incident angle near 20◦; 2) (d) to (f) are
at middle incident angle near 40◦; 3) (g) to (i) are at large incident angle near 60◦.
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reconstruction performance using the parametrization-based model, below we compare only the patterns
before restoring the specular scattering coefficients.

Figure 11 shows an example of the reconstructed patterns compared to the original patterns
simulated using SEBCM. The reconstructed bistatic scattering coefficients are in good agreement to the
original ones; their differences are shown in Figures 11(g) to (i), which are computed by subtracting the
reconstructed patterns from the original patterns. It can be seen from the example that the reconstructed
patterns tend to underestimate the scattering around the specular direction and overestimate the
scattering at the larger incident angles in elevation, except in the backscatter half of the HH pattern.
By averaging over all scattering directions, the differences are 1.94 dB in HH, 2.66 dB in HV , and
3.04 dB in V V .

For all the cases we simulated with ε(0) < ε(1) for the datacube, the RMSEs between the original
and the reconstructed bistatic scattering patterns are calculated and displayed in Figure 12 as a function
of contrast s and the effective rms height heff for three incident angles (θi = 20◦, 40◦, and 60◦). The
averaged RMSEs over contrast and roughness are also shown as a function of incidence angle in Figure 13.
Overall, the bistatic scattering patterns are reconstructed with fairly good accuracy. Errors are bigger
in the V V patterns compared to those for the HH and the HV patterns. Also, the reconstructed
patterns becomes less accurate as the incident angle approaches grazing angles, especially in the cases
with larger roughness and lower contrast.

Figure 13. Averaged RMSE over the angle of incidence. This shows that the reconstruction error
increases as a the incidence angle approaches grazing.

So far, we have only considered scattering from a lossless subsurface. For the lossy cases, we first
compare their bistatic scattering patterns with those of their corresponding lossless cases; both are
simulated using the SEBCM3D. Their averaged differences are plotted in Figure 14 as a function of the
imaginary part of the lower medium dielectric constant for different roughness and the real part of the
lower medium dielectric constant. We expect to see the difference between the lossless and the lossy
patterns increases as the loss in the lower medium increases; and this difference is observed to be smaller
when the lower medium dielectric constant has a larger real part. Overall, within the amount of medium
loss considered in this work, the difference between the lossless and the lossy patterns turns out to be
smaller than the pattern reconstruction error. Hence, we use the same model for pattern reconstruction
for the lossy cases. If in future parametrization-based models, the reconstruction accuracy was improved,
then investigating the lossy cases can be revisited. In addition, though expected to be small, the effect of
the upper medium loss is not evaluated in this work, as we are mainly concerned with bistatic patterns
in which the top surface is beneath air or free space.

Compared to simulation of the bistatic scattering patterns using SEBCM3D, which takes about
1.8 CPU hours on average for computing one surface realization in the Monte Carlo process, the
parametrization-based model can reconstruct the patterns within a fraction of a second. Though,
in many cases, the reconstructed patterns might be less accurate than patterns computed by models
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Figure 14. Averaged S11 difference between lossless and lossy cases.

derived from the Maxwell’s Equations, such rapid solutions with acceptable error are useful trade-off in
many applications, e.g., simulating microwave scattering from large-scale surfaces with facets. On the
other hand, compared to direct lookup in the original datacube, having the datacube parametrized as
analytical functions of the key variables allows 1) even faster pattern computation; 2) more accurate and
immediate interpolation and extrapolation to predict patterns for cases not in the original simulation
forming the datacube; 3) largely reduced data required to store in memory for computation, e.g., size
of the original datacube in this work is 35.5GB, while all the coefficients and lookup tables of the
parametrization-based model take up only 15.8 MB storage space, which enables and is highly preferred
in parallel computation, where only a small amount of data needs to be distributed and stored in the
node cache memories.

4. CONCLUSION

A datacube parametrization-based model has been presented in this work for fast estimation of
polarimetric bistatic scattering from a rough interface with different dielectric constrast. The model
can be used to reconstruct the two-dimensional bistatic scattering patterns as a function of the
surface roughness, the surface dielectric contrast, and the incident angle. Good agreement has been
demonstrated in the reconstructed bistatic scattering pattern compared to the original ones from the
input datacube. Though not physics-based, the datacube parametrization-based model allows quick
estimation and reconstruction of the polarimetric bistatic scattering coefficients and patterns. The
model development approach can also be adapted to parametrize datacubes from simulations with
other configurations or targets, e.g., surface with different correlation functions, etc. Future work
includes expansion of the model to bistatic scattering from high to low dielectric media, as well as to
the estimation of the transmission coefficients.
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