Vol. 169
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-12-31
Electromagnetic-Circuital-Thermal Multiphysics Simulation Method: a Review (Invited)
By
Progress In Electromagnetics Research, Vol. 169, 87-101, 2020
Abstract
Electromagnetic-circuital-thermal multiphysics simulation is a very important topic in the field of integrated circuit (IC), microwave circuits, antennas, etc. This paper gives a comprehensive review of the state of the art of electromagnetic-circuital-thermal multiphysics simulation method. Most efforts were focused on electromagnetic-circuital co-simulation and electromagnetic-thermal co-simulation. A brief introduction of related theory like governing equations, numerical methods, and coupling mechanisms is also included.
Citation
Huan Huan Zhang, Pan Pan Wang, Shuai Zhang, Long Li, Ping Li, Wei E. I. Sha, and Li Jun Jiang, "Electromagnetic-Circuital-Thermal Multiphysics Simulation Method: a Review (Invited)," Progress In Electromagnetics Research, Vol. 169, 87-101, 2020.
doi:10.2528/PIER20112801
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

2. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.

3. Harrington, R. F., Field Computation by Moment Methods, The Macmullan Company, 1968.

4. Huang, C. C. and T. H. Chu, "Analysis of wire scatterers with nonlinear or time-harmonic loads in the frequency domain," IEEE Trans. Antennas Propag., Vol. 41, No. 1, 25-–30, Jan. 1993.
doi:10.1109/8.210111

5. Dault, D., B. Shanker, A. D. Baczewski, and P. Chahal, "Modeling of dense coupled periodic and non-periodic electromagnetic-circuit systems using harmonic balance and fast solvers," Proc. USNC/URSI Rad. Sci. Meeting, Jul. 2011.

6. Lee, J. F., R. Lee, and A. Cangellaris, "Time-domain finite element methods," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 430-442, Mar. 1997.
doi:10.1109/8.558658

7. Zhang, H. H., Z. H. Fan, and R. S. Chen, "Marching-on-in-degree solver of time-domain finite element-boundary integral method for transient electromagnetic analysis," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 319-326, Jan. 2014.
doi:10.1109/TAP.2013.2288351

8. Shanker, B., M. Lu, J. Yuan, and E. Michielssen, "Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 1506-1520, May 2009.
doi:10.1109/TAP.2009.2016700

9. Zhang, H. H., Q. Q. Wang, Y. F. Shi, and R. S. Chen, "Efficient marching-on-in-degree solver of time domain integral equation with adaptive cross approximation algorithm-singular value decomposition," Appl. Comput. Electromagn. Soc. J., Vol. 27, No. 6, 475-482, Jun. 2012.

10. Ding, D. Z., H. H. Zhang, and R. S. Chen, "Marching-on-in-degree method with delayed weighted Laguerre polynomials for transient electromagnetic scattering analysis," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1822-1827, Apr. 2015.
doi:10.1109/TAP.2015.2399511

11. He, Z., H. H. Zhang, and R. S. Chen, "Parallel marching-on-in-degree solver of time-domain combined field integral equation for bodies of revolution accelerated by MLACA," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3705-3710, Aug. 2015.
doi:10.1109/TAP.2015.2430879

12. Kuo, C. N., B. Houshmand, and T. Itoh, "Full-wave analysis of packaged microwave circuits with active and nonlinear devices: An FDTD approach," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 5, 819-826, Aug. 2015.

13. Pereda, J. A., F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "A new algorithm for the incorporation of arbitrary linear lumped networks into FDTD simulators," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 6, 943-949, Jun. 1999.
doi:10.1109/22.769330

14. Wu, T. L., S. T. Chen, and Y. S. Huang, "A novel approach for the incorporation of arbitrary linear lumped network into FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 2, 74-76, Feb. 2004.
doi:10.1109/LMWC.2003.822567

15. Gonzalez, O., J. A. Pereda, A. Herrera, and A. Vegas, "An extension of the lumped-network FDTD method to linear two-port lumped circuits," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 7, 3045-3051, Jul. 2006.
doi:10.1109/TMTT.2006.877058

16. Ma, K. P., M. Vhen, B. Houshband, Y. Qian, and T. Itoh, "Global time-domain full-wave analysis of microwave circuits involving highly nonlinear phenomena and EMC effects," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 6, 859-866, Jun. 1999.
doi:10.1109/22.769319

17. Wang, C. C. and C. W. Kuo, "An efficient scheme for processing arbitrary lumped multiport devices in the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 958-965, May 2007.
doi:10.1109/TMTT.2007.895652

18. Tsai, H. P., Y. Wang, and T. Itoh, "An unconditionally stable extended (USE) finite-element time-domain solution of active nonlinear microwave circuits using perfectly matched layers," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2226-2232, Oct. 2002.
doi:10.1109/TMTT.2002.803442

19. He, Q. and D. Jiao, "Fast electromagnetic-based co-simulation of linear network and nonlinear circuits for the analysis of high-speed integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3677-3687, Dec. 2010.

20. Wang, R. and J. M. Jin, "Incorporation of multiport lumped networks into the hybrid time-domain finite-element analysis," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 8, 2030-2037, Aug. 2009.
doi:10.1109/TMTT.2009.2025459

21. Yang, C. Y. and V. Jandhyala, "Time domain surface integral technique for mixed EM and circuit simulation," IEEE. Trans. Adv. Pack., Vol. 28, No. 4, 745-753, Nov. 2005.
doi:10.1109/TADVP.2005.848389

22. Ayg, K., B. C. Fischer, J. Meng, B. Shanker, and E. Michielssen, "A fast hybrid field-circuit simulator for transient analysis of microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 573-583, Feb. 2004.
doi:10.1109/TMTT.2003.821929

23. Zhang, H. H., L. J. Jiang, and H. M. Yao, "Embedding the behavior macromodel into TDIE for transient field-circuit simulations," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3233-3238, Jul. 2016.
doi:10.1109/TAP.2016.2560901

24. Yilmaz, A. E., J. M. Jin, and E. Michielssen, "A parallel FFT accelerated transient field-circuit simulator," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2851-2865, Sep. 2005.
doi:10.1109/TMTT.2005.854260

25. Chen, S. T., D. Z. Ding, Z. H. Fan, and R. S. Chen, "Nonlinear analysis of microwave limiter using field-circuit coupling algorithm based on time-domain volume-surface integral method," IEEE Microw. and Wireless Compon. Lett., Vol. 27, No. 10, 864-866, Oct. 2017.
doi:10.1109/LMWC.2017.2747218

26. Chen, S., D. Ding, R. Chen, and R. Chen, "A hybrid volume-surface integral spectral-element time-domain method for nonlinear analysis of microwave circuit," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 3034-3037, 2017.
doi:10.1109/LAWP.2017.2759147

27. Chen, S., D. Ding, and R. Chen, "Time-domain impulse response with the TD-VSIE field-circuit coupling algorithm for nonlinear analysis of microwave amplifier," IEEE Microw. and Wireless Compon. Lett., Vol. 28, No. 5, 431-433, May 2018.
doi:10.1109/LMWC.2018.2823008

28. Lu, T., P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions," Journal of Computational Physics, Vol. 200, No. 2, 549-580, Nov. 2004.
doi:10.1016/j.jcp.2004.02.022

29. Chen, G., L. Zhao, W. Yu, and J. Jin, "Discontinuous Galerkin time-domain method for devices with lumped elements," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Suzhou, 2017.

30. Chen, J. and Q. H. Liu, "Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: A review," Proceedings of the IEEE, Vol. 101, No. 2, 242-254, Feb. 2013.
doi:10.1109/JPROC.2012.2219031

31. Yan, S. and J. Jin, "A DGTD-based multiscale simulator for electromagnetic multiphysics problems," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1057-1058, Atlanta, GA, USA, 2019.

32. Yan, S., J. Qian, and J. Jin, "An adaptive discontinuous Galerkin time-domain method for multiphysics and multiscale simulations," 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 0592-0592, Granada, Spain, 2019.
doi:10.1109/ICEAA.2019.8879292

33. Ho, C. W., A. E. Ruehli, and P. A. Brennan, "The modified nodal approach to network analysis," IEEE Trans. Circuits Syst., Vol. 22, No. 6, 504-509, Jun. 1975.
doi:10.1109/TCS.1975.1084079

34. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran, Cambridge Univ. Press, 1992.

35. Dosopoulos, S. and J. F. Lee, "Interconnect and lumped elements modeling in interior penalty discontinuous Galerkin time-domain methods," J. Comput. Phys., Vol. 229, 8521-8536, Aug. 2010.
doi:10.1016/j.jcp.2010.07.036

36. Li, P., L. J. Jiang, and H. Bagci, "Co-simulation of electromagnetics-circuit systems exploiting DGTD and MNA," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 4, No. 6, 1052-1061, Jun. 2014.
doi:10.1109/TCPMT.2014.2316137

37. Li, P. and L. J. Jiang, "Integration of arbitrary lumped multiport circuit networks into the discontinuous Galerkin time-domain analysis," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 7, 2525-2534, Jul. 2013.
doi:10.1109/TMTT.2013.2261085

38. Scott, I., V. Kumar, C. Christopoulos, D. W. P. Thomas, S. Greedy, and P. Sewell, "Integration of behavioral models in the full-field TLM method," IEEE Trans. Electromagn. Compat., Vol. 54, No. 2, 359-366, Feb. 2003.
doi:10.1109/TEMC.2012.2183133

39. Grivet-Talocia, S., I. S. Stievano, and F. G. Canavero, "Hybridization of FDTD and device behavioral-modeling techniques [interconnected digital I/O ports]," IEEE Trans. Electromagn. Compat., Vol. 45, No. 1, 31-42, Apr. 2012.
doi:10.1109/TEMC.2002.808035

40. Stievano, I. S., I. A. Maio, and P. Sewell, "Mπlog, macromodeling via parametric identification of logic gates," IEEE Trans. Adv. Packag., Vol. 27, No. 1, 15-23, Feb. 2004.
doi:10.1109/TADVP.2004.825475

41. Zhang, H. H., L. J. Jiang, H. M. Yao, and Y. Zhang, "Transient heterogeneous electromagnetic simulation with DGTD and behavioral macromodel," IEEE Trans. Electromagn. Compat., Vol. 59, No. 4, 1152-1160, Aug. 2017.
doi:10.1109/TEMC.2016.2642955

42. Yuan, P., H. H. Zhang, L. J. Jiang, D. G. Donoro, and Y. Zhang, "Electromagnetic-circuit cosimulation based on hybrid explicit-implicit DGTD and SBF macromodel," The IEEE Electrical Design of Advanced Packaging and Systems (EDAPS) Symposium, Haining, China, Dec. 2017.

43. Zhang, H. H., L. J. Jiang, H. M. Yao, and Y. Zhang, "Coupling DGTD and behavioral macromodel for transient heterogeneous electromagnetic simulations," 2016 IEEE International Symposium on Electromagnetic Compatibility, Ottawa, Canada, Jul. 2016.

44. Zhang, H. H., H. M. Yao, and L. J. Jiang, "Novel time domain integral equation method hybridized with the macromodels of circuits," The 24th Conference on Electrical Performance of Electronic Packages and Systems (EPEPS), San Jose, CA, USA, Oct. 2015.

45. Yao, H. M., L. J. Jiang, H. H. Zhang, and W. E. I. Sha, "Machine learning methodology review for computational electromagnetics," 2019 International Applied Computational Electromagnetics Society (ACES) Symposium in China, Beijing, China, Aug. 2019.

46. Ma, L. and D. L. Paul, "Experimental validation of a combined electromagnetic and thermal FDTD model of a microwave heating process," IEEE Trans. Microw. Theory Tech., Vol. 1, No. 43, 2565-2572, 1995.

47. Torres, F. and B. Jecko, "Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature-dependent media," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 108-117, 1997.
doi:10.1109/22.552039

48. Haala, J. and W. Wiesbeck, "Modeling microwave and hybrid heating processes including heat radiation effects," IEEE Trans. Electromagn. Compat., Vol. 50, No. 5, 1346-1354, 2002.

49. Liu, E., E. Li, W. Ewe, and H. M. Lee, "Multi-physics modeling of through-Silicon vias with equivalent-circuit approach," 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems (EPEPS), 33-36, Austin, TX, 2010.
doi:10.1109/EPEPS.2010.5642537

50. Lu, T. and J. M. Jin, "Electrical-thermal co-simulation for DCIR-drop analysis of large-scale power delivery," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 4, No. 2, 323-331, Feb. 2014.
doi:10.1109/TCPMT.2013.2275271

51. Lu, T. and J. M. Jin, "Thermal-aware high-frequency characterization of large-scale through-Silicon-via structures," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 4, No. 6, 1015-1025, 2014.
doi:10.1109/TCPMT.2014.2312136

52. Lu, T. J. and J. M. Jin, "Transient electrical-thermal analysis of 3-D power distribution network with FETI-enabled parallel computing," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 4, No. 10, 1684-1695, 2014.
doi:10.1109/TCPMT.2014.2345651

53. Li, N., J. F. Mao, W. S. Zhao, M. Tang, W. C. Chen, and W. Y. Yin, "Electrothermal cosimulation of 3-D carbon-based heterogeneous interconnects," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 6, No. 4, 1-9, 2016.
doi:10.1109/TCPMT.2016.2551338

54. Lu, T. J. and J. M. Jin, "Electrical-thermal co-simulation for analysis of high-power RF/microwave components," IEEE Trans. Electromagn. Compat., Vol. 59, No. 1, 93-102, 2017.
doi:10.1109/TEMC.2016.2597311

55. Zhang, H. H., W. E. I. Sha, et al. "Electromagnetic-thermal analysis of human head exposed to cell phones with the consideration of radiative cooling," IEEE Antennas and Wireless Propag. Lett., Vol. 17, No. 9, 1584-1587, Jul. 2018.
doi:10.1109/LAWP.2018.2856365

56. Zhang, H. H., Y. Liu, X. Y. Z. Xiong, G. M. Shi, C. Y. Wang, and W. E. I. Sha, "Investigating thermal cooling mechanisms of human body under exposure to electromagnetic radiation," IEEE Access, Vol. 7, 9697-9703, 2019.
doi:10.1109/ACCESS.2019.2891696

57. Chen, P. Y., H. H. Zhang, G. G. Yu, W. E. I. Sha, C. Y.Wang, and Y. Y. An, "Cooling mechanisms of human under high-power electromagnetic radiation," 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, Mar. 2019.

58. Zhang, H. H., P. Yuan, P. Y. Chen, and W. W. Choi, "Simulation of temperature increase of human head model exposed to cell phones," 2018 International Applied Computational Electromagnetics Society (ACES) Symposium in China, Beijing, China, Jul. 2018.

59. Li, P., Y. Dong, M. Tang, et al. "Transient thermal analysis of 3-D integrated circuits packages by the DGTD method," IEEE Trans. Compon., Packag. Manuf. Tech., 1-10, 2017.
doi:10.1109/TCPMT.2017.2741699

60. Chen, P. Y., H. H. Zhang, E. I. W. Sha, and D. Z. Ding, "Transient electromagnetic-thermal cosimulation based on DGTD method," 2019 International Applied Computational Electromagnetics Society Symposium-China (ACES), 1-2, Nanjing, China, 2019.

61. Dong, Y., M. Tang, P. Li, and J. Mao, "Transient electromagnetic-thermal simulation of dispersive media using DGTD method," IEEE Trans. Electromagn. Compat., Vol. 61, No. 4, 1305-1313, 2019.

62. Zhang, H. H., W. E. I. Sha, Z. X. Huang, and G. M. Shi, "Flexible and accurate simulation of radiation cooling with FETD method," Scientific Reports, Vol. 8, No. 1, 2652-2661, Feb. 2018.
doi:10.1038/s41598-018-21020-w

63. Zhang, H. H., P. Y. Chen, W. E. I. Sha, and Z. X. Huang, "Accurate simulation of convection and radiation cooling for a 3D IC package," 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, Mar. 2018.

64. Zhang, H. H., W. E. I. Sha, Z. X. Huang, and Y. Zhang, "Simulation of radiative cooling with FETD method," The IEEE Electrical Design of Advanced Packaging and Systems (EDAPS) Symposium, Haining, China, Dec. 2017.