1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693
2. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.
3. Harrington, R. F., Field Computation by Moment Methods, The Macmullan Company, 1968.
4. Huang, C. C. and T. H. Chu, "Analysis of wire scatterers with nonlinear or time-harmonic loads in the frequency domain," IEEE Trans. Antennas Propag., Vol. 41, No. 1, 25-–30, Jan. 1993.
doi:10.1109/8.210111
5. Dault, D., B. Shanker, A. D. Baczewski, and P. Chahal, "Modeling of dense coupled periodic and non-periodic electromagnetic-circuit systems using harmonic balance and fast solvers," Proc. USNC/URSI Rad. Sci. Meeting, Jul. 2011.
6. Lee, J. F., R. Lee, and A. Cangellaris, "Time-domain finite element methods," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 430-442, Mar. 1997.
doi:10.1109/8.558658
7. Zhang, H. H., Z. H. Fan, and R. S. Chen, "Marching-on-in-degree solver of time-domain finite element-boundary integral method for transient electromagnetic analysis," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 319-326, Jan. 2014.
doi:10.1109/TAP.2013.2288351
8. Shanker, B., M. Lu, J. Yuan, and E. Michielssen, "Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 1506-1520, May 2009.
doi:10.1109/TAP.2009.2016700
9. Zhang, H. H., Q. Q. Wang, Y. F. Shi, and R. S. Chen, "Efficient marching-on-in-degree solver of time domain integral equation with adaptive cross approximation algorithm-singular value decomposition," Appl. Comput. Electromagn. Soc. J., Vol. 27, No. 6, 475-482, Jun. 2012.
10. Ding, D. Z., H. H. Zhang, and R. S. Chen, "Marching-on-in-degree method with delayed weighted Laguerre polynomials for transient electromagnetic scattering analysis," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1822-1827, Apr. 2015.
doi:10.1109/TAP.2015.2399511
11. He, Z., H. H. Zhang, and R. S. Chen, "Parallel marching-on-in-degree solver of time-domain combined field integral equation for bodies of revolution accelerated by MLACA," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3705-3710, Aug. 2015.
doi:10.1109/TAP.2015.2430879
12. Kuo, C. N., B. Houshmand, and T. Itoh, "Full-wave analysis of packaged microwave circuits with active and nonlinear devices: An FDTD approach," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 5, 819-826, Aug. 2015.
13. Pereda, J. A., F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "A new algorithm for the incorporation of arbitrary linear lumped networks into FDTD simulators," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 6, 943-949, Jun. 1999.
doi:10.1109/22.769330
14. Wu, T. L., S. T. Chen, and Y. S. Huang, "A novel approach for the incorporation of arbitrary linear lumped network into FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 2, 74-76, Feb. 2004.
doi:10.1109/LMWC.2003.822567
15. Gonzalez, O., J. A. Pereda, A. Herrera, and A. Vegas, "An extension of the lumped-network FDTD method to linear two-port lumped circuits," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 7, 3045-3051, Jul. 2006.
doi:10.1109/TMTT.2006.877058
16. Ma, K. P., M. Vhen, B. Houshband, Y. Qian, and T. Itoh, "Global time-domain full-wave analysis of microwave circuits involving highly nonlinear phenomena and EMC effects," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 6, 859-866, Jun. 1999.
doi:10.1109/22.769319
17. Wang, C. C. and C. W. Kuo, "An efficient scheme for processing arbitrary lumped multiport devices in the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 958-965, May 2007.
doi:10.1109/TMTT.2007.895652
18. Tsai, H. P., Y. Wang, and T. Itoh, "An unconditionally stable extended (USE) finite-element time-domain solution of active nonlinear microwave circuits using perfectly matched layers," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2226-2232, Oct. 2002.
doi:10.1109/TMTT.2002.803442
19. He, Q. and D. Jiao, "Fast electromagnetic-based co-simulation of linear network and nonlinear circuits for the analysis of high-speed integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3677-3687, Dec. 2010.
20. Wang, R. and J. M. Jin, "Incorporation of multiport lumped networks into the hybrid time-domain finite-element analysis," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 8, 2030-2037, Aug. 2009.
doi:10.1109/TMTT.2009.2025459
21. Yang, C. Y. and V. Jandhyala, "Time domain surface integral technique for mixed EM and circuit simulation," IEEE. Trans. Adv. Pack., Vol. 28, No. 4, 745-753, Nov. 2005.
doi:10.1109/TADVP.2005.848389
22. Ayg, K., B. C. Fischer, J. Meng, B. Shanker, and E. Michielssen, "A fast hybrid field-circuit simulator for transient analysis of microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 573-583, Feb. 2004.
doi:10.1109/TMTT.2003.821929
23. Zhang, H. H., L. J. Jiang, and H. M. Yao, "Embedding the behavior macromodel into TDIE for transient field-circuit simulations," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3233-3238, Jul. 2016.
doi:10.1109/TAP.2016.2560901
24. Yilmaz, A. E., J. M. Jin, and E. Michielssen, "A parallel FFT accelerated transient field-circuit simulator," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2851-2865, Sep. 2005.
doi:10.1109/TMTT.2005.854260
25. Chen, S. T., D. Z. Ding, Z. H. Fan, and R. S. Chen, "Nonlinear analysis of microwave limiter using field-circuit coupling algorithm based on time-domain volume-surface integral method," IEEE Microw. and Wireless Compon. Lett., Vol. 27, No. 10, 864-866, Oct. 2017.
doi:10.1109/LMWC.2017.2747218
26. Chen, S., D. Ding, R. Chen, and R. Chen, "A hybrid volume-surface integral spectral-element time-domain method for nonlinear analysis of microwave circuit," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 3034-3037, 2017.
doi:10.1109/LAWP.2017.2759147
27. Chen, S., D. Ding, and R. Chen, "Time-domain impulse response with the TD-VSIE field-circuit coupling algorithm for nonlinear analysis of microwave amplifier," IEEE Microw. and Wireless Compon. Lett., Vol. 28, No. 5, 431-433, May 2018.
doi:10.1109/LMWC.2018.2823008
28. Lu, T., P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions," Journal of Computational Physics, Vol. 200, No. 2, 549-580, Nov. 2004.
doi:10.1016/j.jcp.2004.02.022
29. Chen, G., L. Zhao, W. Yu, and J. Jin, "Discontinuous Galerkin time-domain method for devices with lumped elements," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Suzhou, 2017.
30. Chen, J. and Q. H. Liu, "Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: A review," Proceedings of the IEEE, Vol. 101, No. 2, 242-254, Feb. 2013.
doi:10.1109/JPROC.2012.2219031
31. Yan, S. and J. Jin, "A DGTD-based multiscale simulator for electromagnetic multiphysics problems," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1057-1058, Atlanta, GA, USA, 2019.
32. Yan, S., J. Qian, and J. Jin, "An adaptive discontinuous Galerkin time-domain method for multiphysics and multiscale simulations," 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 0592-0592, Granada, Spain, 2019.
doi:10.1109/ICEAA.2019.8879292
33. Ho, C. W., A. E. Ruehli, and P. A. Brennan, "The modified nodal approach to network analysis," IEEE Trans. Circuits Syst., Vol. 22, No. 6, 504-509, Jun. 1975.
doi:10.1109/TCS.1975.1084079
34. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran, Cambridge Univ. Press, 1992.
35. Dosopoulos, S. and J. F. Lee, "Interconnect and lumped elements modeling in interior penalty discontinuous Galerkin time-domain methods," J. Comput. Phys., Vol. 229, 8521-8536, Aug. 2010.
doi:10.1016/j.jcp.2010.07.036
36. Li, P., L. J. Jiang, and H. Bagci, "Co-simulation of electromagnetics-circuit systems exploiting DGTD and MNA," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 4, No. 6, 1052-1061, Jun. 2014.
doi:10.1109/TCPMT.2014.2316137
37. Li, P. and L. J. Jiang, "Integration of arbitrary lumped multiport circuit networks into the discontinuous Galerkin time-domain analysis," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 7, 2525-2534, Jul. 2013.
doi:10.1109/TMTT.2013.2261085
38. Scott, I., V. Kumar, C. Christopoulos, D. W. P. Thomas, S. Greedy, and P. Sewell, "Integration of behavioral models in the full-field TLM method," IEEE Trans. Electromagn. Compat., Vol. 54, No. 2, 359-366, Feb. 2003.
doi:10.1109/TEMC.2012.2183133
39. Grivet-Talocia, S., I. S. Stievano, and F. G. Canavero, "Hybridization of FDTD and device behavioral-modeling techniques [interconnected digital I/O ports]," IEEE Trans. Electromagn. Compat., Vol. 45, No. 1, 31-42, Apr. 2012.
doi:10.1109/TEMC.2002.808035
40. Stievano, I. S., I. A. Maio, and P. Sewell, "Mπlog, macromodeling via parametric identification of logic gates," IEEE Trans. Adv. Packag., Vol. 27, No. 1, 15-23, Feb. 2004.
doi:10.1109/TADVP.2004.825475
41. Zhang, H. H., L. J. Jiang, H. M. Yao, and Y. Zhang, "Transient heterogeneous electromagnetic simulation with DGTD and behavioral macromodel," IEEE Trans. Electromagn. Compat., Vol. 59, No. 4, 1152-1160, Aug. 2017.
doi:10.1109/TEMC.2016.2642955
42. Yuan, P., H. H. Zhang, L. J. Jiang, D. G. Donoro, and Y. Zhang, "Electromagnetic-circuit cosimulation based on hybrid explicit-implicit DGTD and SBF macromodel," The IEEE Electrical Design of Advanced Packaging and Systems (EDAPS) Symposium, Haining, China, Dec. 2017.
43. Zhang, H. H., L. J. Jiang, H. M. Yao, and Y. Zhang, "Coupling DGTD and behavioral macromodel for transient heterogeneous electromagnetic simulations," 2016 IEEE International Symposium on Electromagnetic Compatibility, Ottawa, Canada, Jul. 2016.
44. Zhang, H. H., H. M. Yao, and L. J. Jiang, "Novel time domain integral equation method hybridized with the macromodels of circuits," The 24th Conference on Electrical Performance of Electronic Packages and Systems (EPEPS), San Jose, CA, USA, Oct. 2015.
45. Yao, H. M., L. J. Jiang, H. H. Zhang, and W. E. I. Sha, "Machine learning methodology review for computational electromagnetics," 2019 International Applied Computational Electromagnetics Society (ACES) Symposium in China, Beijing, China, Aug. 2019.
46. Ma, L. and D. L. Paul, "Experimental validation of a combined electromagnetic and thermal FDTD model of a microwave heating process," IEEE Trans. Microw. Theory Tech., Vol. 1, No. 43, 2565-2572, 1995.
47. Torres, F. and B. Jecko, "Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature-dependent media," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 108-117, 1997.
doi:10.1109/22.552039
48. Haala, J. and W. Wiesbeck, "Modeling microwave and hybrid heating processes including heat radiation effects," IEEE Trans. Electromagn. Compat., Vol. 50, No. 5, 1346-1354, 2002.
49. Liu, E., E. Li, W. Ewe, and H. M. Lee, "Multi-physics modeling of through-Silicon vias with equivalent-circuit approach," 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems (EPEPS), 33-36, Austin, TX, 2010.
doi:10.1109/EPEPS.2010.5642537
50. Lu, T. and J. M. Jin, "Electrical-thermal co-simulation for DCIR-drop analysis of large-scale power delivery," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 4, No. 2, 323-331, Feb. 2014.
doi:10.1109/TCPMT.2013.2275271
51. Lu, T. and J. M. Jin, "Thermal-aware high-frequency characterization of large-scale through-Silicon-via structures," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 4, No. 6, 1015-1025, 2014.
doi:10.1109/TCPMT.2014.2312136
52. Lu, T. J. and J. M. Jin, "Transient electrical-thermal analysis of 3-D power distribution network with FETI-enabled parallel computing," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 4, No. 10, 1684-1695, 2014.
doi:10.1109/TCPMT.2014.2345651
53. Li, N., J. F. Mao, W. S. Zhao, M. Tang, W. C. Chen, and W. Y. Yin, "Electrothermal cosimulation of 3-D carbon-based heterogeneous interconnects," IEEE Trans. Compon., Packag. Manuf. Tech., Vol. 6, No. 4, 1-9, 2016.
doi:10.1109/TCPMT.2016.2551338
54. Lu, T. J. and J. M. Jin, "Electrical-thermal co-simulation for analysis of high-power RF/microwave components," IEEE Trans. Electromagn. Compat., Vol. 59, No. 1, 93-102, 2017.
doi:10.1109/TEMC.2016.2597311
55. Zhang, H. H., W. E. I. Sha, et al. "Electromagnetic-thermal analysis of human head exposed to cell phones with the consideration of radiative cooling," IEEE Antennas and Wireless Propag. Lett., Vol. 17, No. 9, 1584-1587, Jul. 2018.
doi:10.1109/LAWP.2018.2856365
56. Zhang, H. H., Y. Liu, X. Y. Z. Xiong, G. M. Shi, C. Y. Wang, and W. E. I. Sha, "Investigating thermal cooling mechanisms of human body under exposure to electromagnetic radiation," IEEE Access, Vol. 7, 9697-9703, 2019.
doi:10.1109/ACCESS.2019.2891696
57. Chen, P. Y., H. H. Zhang, G. G. Yu, W. E. I. Sha, C. Y.Wang, and Y. Y. An, "Cooling mechanisms of human under high-power electromagnetic radiation," 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, Mar. 2019.
58. Zhang, H. H., P. Yuan, P. Y. Chen, and W. W. Choi, "Simulation of temperature increase of human head model exposed to cell phones," 2018 International Applied Computational Electromagnetics Society (ACES) Symposium in China, Beijing, China, Jul. 2018.
59. Li, P., Y. Dong, M. Tang, et al. "Transient thermal analysis of 3-D integrated circuits packages by the DGTD method," IEEE Trans. Compon., Packag. Manuf. Tech., 1-10, 2017.
doi:10.1109/TCPMT.2017.2741699
60. Chen, P. Y., H. H. Zhang, E. I. W. Sha, and D. Z. Ding, "Transient electromagnetic-thermal cosimulation based on DGTD method," 2019 International Applied Computational Electromagnetics Society Symposium-China (ACES), 1-2, Nanjing, China, 2019.
61. Dong, Y., M. Tang, P. Li, and J. Mao, "Transient electromagnetic-thermal simulation of dispersive media using DGTD method," IEEE Trans. Electromagn. Compat., Vol. 61, No. 4, 1305-1313, 2019.
62. Zhang, H. H., W. E. I. Sha, Z. X. Huang, and G. M. Shi, "Flexible and accurate simulation of radiation cooling with FETD method," Scientific Reports, Vol. 8, No. 1, 2652-2661, Feb. 2018.
doi:10.1038/s41598-018-21020-w
63. Zhang, H. H., P. Y. Chen, W. E. I. Sha, and Z. X. Huang, "Accurate simulation of convection and radiation cooling for a 3D IC package," 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, Mar. 2018.
64. Zhang, H. H., W. E. I. Sha, Z. X. Huang, and Y. Zhang, "Simulation of radiative cooling with FETD method," The IEEE Electrical Design of Advanced Packaging and Systems (EDAPS) Symposium, Haining, China, Dec. 2017.