Vol. 98
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-20
Array Pattern Recovery Under Amplitude Excitation Errors Using Clustered Elements
By
Progress In Electromagnetics Research M, Vol. 98, 183-192, 2020
Abstract
In practice, the amplitude and phase excitations of array elements undergo random errors that lead to unexpected variations in the array radiation patterns. In this paper, the technique of the clustered array elements with discretized amplitude excitations is used to minimize the effect of random amplitude excitation errors and restore the desired array patterns. The most important feature of the proposed technique is its implementation in the design stage which may instantly count for any errors in the amplitude excitations. The cost function of the used optimizer is constrained to prevent any undesirable increase in the sidelobe levels due to unexpected excitation errors. Moreover, the error occurrences on the element amplitude excitations are considered to be either randomly over the whole array aperture or regionally (i.e., error affecting only a part of the array elements that located in a particular quadrant of the array aperture). Simulation results fully verify the effectiveness of the proposed technique.
Citation
Jafar Ramadhan Mohammed, Ahmed Jameel Abdulqader, and Raad H. Thaher, "Array Pattern Recovery Under Amplitude Excitation Errors Using Clustered Elements," Progress In Electromagnetics Research M, Vol. 98, 183-192, 2020.
doi:10.2528/PIERM20101906
References

1. Wang, H. S. C., "Performance of phased-array antennas with mechanical errors," IEEE Trans. Aerosp. Electron. Syst., Vol. 28, No. 2, 535-545, Apr. 1992.
doi:10.1109/7.144579

2. Mohammed, J. R., "Obtaining wide steered nulls in linear array patterns by controlling the locations of two edge elements," AEU International Journal of Electronics and Communications, Vol. 101, 145-151, Mar. 2019.
doi:10.1016/j.aeue.2019.02.004

3. Amir, Z. and A. R. Bijan, "GA-based approach to phase compensation of large phased array antennas," Journal of Systems Engineering and Electronics, Vol. 29, No. 4, 723-730, Aug. 2018.
doi:10.21629/JSEE.2018.04.07

4. Rocca, P., L. Manica, N. Anselmi, and A. Massa, "Analysis of the pattern tolerances in linear arrays with arbitrary amplitude errors," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 2013.

5. Van den Biggelaar, A. J., U. Johannsen, P. Mattheijssen, and A. B. Smolders, "Improved statistical model on the effect of random errors in the phase and amplitude of element excitations on the array radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2309-2317, 2018.
doi:10.1109/TAP.2018.2800519

6. Lee, J., Y. Lee, and H. Kim, "Decision of error tolerance in array element by the Monte Carlo method," IEEE Transaction on Antennas and Propagation, Vol. 53, No. 4, Apr. 2005.

7. Keizer, W. P. M. N., "Low sidelobe phased array pattern synthesis with compensation for errors due to quantized tapering," IEEE Trans on Antennas and Propagation, Vol. 59, No. 12, Dec. 2011.
doi:10.1109/TAP.2011.2165509

8. Tarek, S. and M. A. Ahmed, "Different array synthesis techniques for planar antenna array," The Applied Computational Electromagnetics Society Journal, Vol. 34, No. 5, May 2019.

9. Peters, T. J., "A conjugate gradient-based algorithm to minimize the sidelobe level of planar arrays with element failures," IEEE Trans. Antennas Propag., Vol. 39, 1497-1504, Oct. 1991.

10. Mohammed, J. R. and K. H. Sayidmarie, "Sensitivity of the adaptive nulling to random errors in amplitude and phase excitations in array elements," International Journal of Telecommunication, Electronics, and Computer Engineering, Vol. 10, No. 1, 51-56, Jan.–Mar. 2018.

11. Zhang, W., L. Li, and F. Li, "Reducing the number of elements in linear and planar antenna arrays with sparseness constrained optimization," IEEE Trans on Antennas and Propagation, Vol. 59, No. 8, Aug. 2011.

12. Mohammed, J. R., "Optimal null steering method in uniformly excited equally spaced linear array by optimizing two edge elements," Electronics Letters, Vol. 53, No. 13, 835-837, June 2017.
doi:10.1049/el.2017.1405

13. Mohammed, J. R. and K. H. Sayidmarie, "Synthesizing asymmetric sidelobe pattern with steered nulling in non-uniformly excited linear arrays by controlling edge elements," International Journal of Antennas and Propagation, Vol. 2017, Article ID 9293031, 8 pages, 2017.

14. Sayidmarie, K. H. and J. R. Mohammed, "Performance of a wide angle and wideband nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, 2013.
doi:10.2528/PIERM13100603

15. Abdulkader, A. J., J. R. Mohammed, and R. H. Thaher, "Phase-only nulling with limited number of controllable side elements," Progress In Electromagnetics Research C, Vol. 99, 167-178, 2020.
doi:10.2528/PIERC20010203

16. Mohammed, J. R., A. J. Abdulqader, and R. Hamdan, "Antenna pattern optimization via clustered arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.

17. Haupt, R. L. and D. Werner, Genetic Algorithms in Electromagnetics, John Wiley & Sons, 2007.
doi:10.1002/047010628X