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Array Pattern Recovery under Amplitude Excitation Errors Using
Clustered Elements
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Abstract—In practice, the amplitude and phase excitations of array elements undergo random errors
that lead to unexpected variations in the array radiation patterns. In this paper, the technique of
the clustered array elements with discretized amplitude excitations is used to minimize the effect of
random amplitude excitation errors and restore the desired array patterns. The most important feature
of the proposed technique is its implementation in the design stage which may instantly count for any
errors in the amplitude excitations. The cost function of the used optimizer is constrained to prevent
any undesirable increase in the sidelobe levels due to unexpected excitation errors. Moreover, the
error occurrences on the element amplitude excitations are considered to be either randomly over the
whole array aperture or regionally (i.e., error affecting only a part of the array elements that located
in a particular quadrant of the array aperture). Simulation results fully verify the effectiveness of the
proposed technique.

1. INTRODUCTION

Planar antenna arrays were effectively used in conventional communication systems, and they will be
also used effectively in the modern and future communication systems such as massive MIMO in 5G
applications due to their advantages for fulfilling the desired radiation characteristics. However, the
good performances of such arrays cannot be maintained in practice due to unavoidable errors in the
array design. Basically, there are two types of errors that may occur in the antenna arrays. The first
type is mechanical nature that includes errors in the locations of the array elements. Examples of such
a type of error are array imperfections [1, 2]. The second type is electrical nature that affects the feeding
of the array elements in terms of amplitude and phase excitations [3]. The presence of these errors can
cause many problems, including the variations in the field strength, damage in the radiation pattern,
unexpected increase in the side lobe level, and deviations in null directions and depths. Therefore, the
original radiation pattern must be restored, and these errors must be corrected.

In the literature, many techniques have been proposed by researches to solve these problems [4–
16]. Rocca and others [4] used an analytical method based on interval analysis to predict unexpected
variations in the array radiation pattern as a result of exposure of the excitation amplitudes to different
changes due to random errors. In [5], a group of researchers proposed a statistical method based on
Rician and Beckmann distributions to analyze the errors that could be exposed to the feed, as they used
Monte Carlo simulation to study the damaged radiation pattern as a result of errors in the excitation
of the amplitude and phase of the elements. In [6], the authors used Monte Carlo optimization to study
the tolerance of error amplitude and its effect on the radiation pattern. Keizer in [7] used an iterative
Fourier transform to restore the desired radiation pattern due to quantization errors and correct the
failure elements. Tarek and Ahmed in [8] suggested different synthesis techniques for planar arrays
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under random errors. In [9], Peters suggested the method of conjugate gradient to reconfigure the
amplitude and phase of the non-failed elements to reduce the sidelobe level in the sum and difference
patterns of the planar arrays. In [10], the sensitivity of the adaptive nulling under the effect of random
excitation errors was studied. The effect of selecting a small number of the controllable elements on the
array performance was also investigated in [11–15]. Interestingly, it is found that the arrays become
more robust against errors when using only limited number of controllable elements instead of all of
them.

In [16], the authors proposed two new array architectures based on clustered elements. The clustered
elements were chosen to be either regular or irregular. These clustered architectures were applied to
linear arrays. In this paper, the method that was presented in [16] is extended to address the problem
of random amplitude errors in the planar arrays where the clusters are formed in the shape of tiles.
An initial planar array is first divided into a number of small clusters; each cluster is excited with a
common discrete amplitude weighting control. The range of the amplitude weighting is constrained
to be within a specified bound of the available digital attenuators. Thus, by optimizing the clustered
element weights under these constraints, the effect of the random amplitude excitation errors due to
quantization errors can be minimized. Also, much smaller number of discrete attenuators will be needed
in practice. Moreover, the error could affect the element amplitude excitations randomly or regionally
(i.e., error affecting only a part of the array elements that located in a particular quadrant of the array
aperture). The genetic algorithm (GA) in [17] was used to construct the clustered arrays and minimize
the effect of the random errors.

2. THE PROPOSED TECHNIQUE

The illustration of the idea of this study can be divided into two parts. In the first part, the array
factor of the clustered planar array is formulated. The amplitude excitations of the initial fully
planar array (before clustering) could be chosen according to the Dolph-Chebyshev distribution, and
its corresponding radiation pattern is assumed to be the desired one (i.e., reference pattern without
error). Then, the effects of the amplitude excitation errors on the array patterns are examined. The
second part explains the mechanism of using the genetic algorithm to restore the array pattern under
error exposure in the amplitudes of the array elements. The errors are assumed to be either random or
regional.

2.1. The Clustered Planar Array

Consider a two-dimensional planar array with size Nx×Ny, as shown in Fig. 1, and the separation
distance between any two adjacent elements in x or y axes is set to dx=dy=λ

2 . The elements are
symmetrically divided into a number of clusters equal to Cx×Cy, and each cluster consists of a certain
number of elements equal to Mx×My. Note that the size of the cluster Mx×My is much smaller than
that of the original planar array Nx×Ny. The radiation pattern of the clustered arrays in both elevation,

Figure 1. Clustered planar array.
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θ, and azimuth, ∅, angles can be written as:

AF (θ, ∅)= 4
Cx/2∑
cx=1

Cy/2∑
cy=1

AcxcyFcx,cy

Mx/2∑
mx=1

My/2∑
my=1

WmxmyFmx,my (1)

where Acxcy is the common amplitude weighting of a group of elements within a specific cluster, Wmxmy

the complex (amplitude and phase) weighting of each individual radiating element in the original planar
array, and

Fcx,cy = {cos [ (cy−0.5) dcy ]cos[ (cx−0.5) dcx ]}2π
λ

sin θ cos ∅ (2)

Fmx,my = {cos [ (my−0.5) dy]cos[ (mx−0.5) dx]}2π
λ

sin θ sin ∅ (3)

where dcx=dcy is the spacing between clusters in x and y axes. For amplitude-only control where the
phases of the array elements are set to zero, the complex weighting at both the individual element level
and clustered element level becomes Wmxmy=

∣∣Wmxmy

∣∣ and Acxcy=
∣∣Acxcy

∣∣, respectively.
The complex weighting of the individual array elements, Wmxmy , may be chosen according to Dolph

distribution, and its corresponding radiation pattern will be used as a reference pattern for recovering
the damaged pattern.

2.2. Error Affect

To consider the effect of random errors, the amplitude weighting errors, ΔAcxcy , are included in the
clustered levels. As a result, the array pattern in Eq. (1) will undergo deviations from its initially ideal
condition (i.e., error free) as shown below

AF (θ, ∅)error= 4
Cx/2∑
cx=1

Cy/2∑
cy=1

∣∣Acxcy−ΔAcxcy

∣∣Fcx,cy

Mx/2∑
mx=1

My/2∑
my=1

∣∣Wmxmy

∣∣ Fmx,my (4)

The term Acxcy − ΔAcxcy can be represented as Acxcyδcxcy , where δcxcy is the error factor

δcxcy = 1 − ΔAcxcy

Acxcy

(5)

Its mean can be calculated by δ̄ = 1
2γ

∫ γ
−γ δcxcydδ, where γ = γr

2(2a−1) , γr is the range of values used in
the digital attenuator, and a is the number of bits. If γr is in decibels, then γ can also be computed in
decibels, then the range of error factor in decibels is − γr

2(2a−1) ≤ δdB ≤ γr

2(2a−1) .
The variance of the clustered weight error can be obtained from

σ2
δ =

1
2γ

γ∫
−γ

(10
δdB
20 − δ̄)

2

dδdB (6)

This can be determined as

σ2
δ = 5

10−γ/10

γ ln(10)

[(
10γ/5 − 1

)
− 20

(
10γ/10 − 1

)2

γ ln(10)

]
(7)

Clearly, the limited ranges of the digital attenuators are causing significant errors in the array weights.
Generally, the amplitude’s range can be computed by the ratio of the weight at the edge to the weight
at the center of the array elements. The use of amplitude weighting at the clustered elements level
instead of individual elements level reduces the quantization errors.

Finally, we can find the deviation in the directivity due to the error

Ddeviation =
4π∑

cx,cy

∣∣Acx,cy

∣∣2 E
[
|AF error|2

]
(8)
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where E is the average (or expectation) operator, then Eq. (8) can be further simplified to

Ddeviation = δ̄2Doriginal + 4πσ2
δ (9)

The deviation in the directivity, Ddeviation, is different from the error-free directivity, Doriginal, by δ̄2

which is small in the clustered array. Thus, the directivity is not much affected by the errors. On the
other hand, the error in the sidelobe level pattern can be found by

SLLerror =

σ2
δ

∑
cx,cy

∣∣Acx,cy

∣∣2

δ̄2

∣∣∣∣∣∣
∑
cx,cy

Acx,cy

∣∣∣∣∣∣
2 (10)

From Eq. (10), it is clear that the clustered arrays are more tolerant of amplitude errors due to the
dependence of SLLerror on the clustered amplitudes which is less than that of the individual elements
amplitudes.

3. SIMULATION RESULTS

To evaluate the effectiveness of the clustered arrays in minimizing the effects of amplitude quantization
and at the same time simplifying the array complexity, extensive computer simulations are carried out
under different scenarios. The original fully planar array is made up of 30 × 30 isotropic elements with
a separation distance dx=dy=λ

2 . The errors that added to the clustered array weights are real random
numbers of zero average value. The errors are assumed to be either randomly affecting the element
excitations over the whole array aperture or just regionally (i.e., affecting only a part of the array
elements that located in a particular quadrant of the array aperture). The genetic algorithm with single
point crossover, population size of 20, and mutation rate equal to 0.15 is used to optimize the clustered
weights according to the following cost function

CF =
∑

|AF error (θ, ∅) − Constraints|2 (11)

where Constraints represent the desired limits on the clustered array pattern which is used to minimize
the sidelobe error pattern, SLLerror. The lower and upper bounds of the cluster amplitude weights are
set between 0 and 1. Both regular and irregular clustered arrays are constructed and examined in this
paper. In the regular clustered arrays, all the clusters compose the same number of the elements with
size 2 × 2, or 3 × 3, or any other size. On the other hand, in irregular clustered arrays, the numbers
of elements are non-uniformly but evenly distributed among the clusters, and thus the size of a certain
cluster is different from other clusters. The used genetic algorithm has Cx×Cy+Mx×My parameters to
optimize. The following scenarios were considered to investigate the performance of the proposed array.

3.1. Scenario 1: Random Errors with Regular Clustered Arrays

Figures 2(a) and 2(b) show the layout and weights of the effected elements, while Figs. 2(c) and 2(d)
show the results of applying the regular clustered arrays with size Mx×My= 2 × 2 to minimize the
sidelobe error pattern. For comparison purpose, the patterns of the fully planar array (i.e., without
clusters) and the planar array with errors are also shown in Fig. 2(c). The sidelobe level constraint
is chosen to not exceed −30 dB. From this figure, it can be seen that the proposed clustered array is
capable to reduce the error and maintain the sidelobe level below a constraint limit.

The effect of the random errors on the placed nulls is studied in the next example. Fig. 3 shows the
results of the optimized clustered array with a wide null centered at u = 0.75. In this case, the regular
clustered arrays with uniform size equal to Mx×My= 2 × 2 are considered. The obtained results verify
the robustness of the placed nulls against the random errors.
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(a) Elements layout (b) Weights of the fully array with errors

(c) Radiation patterns (d) Weights of the 2 × 2 regular clustered array

Figure 2. Results of applying regular clustered arrays with Mx×My = 2×2 and for an original planar
array with Nx × Ny = 30 × 30.

Figure 3. Results of regular clustered arrays with a wide null.
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3.2. Scenario 2: Random Errors with Irregular Clustered Arrays

Figure 4 shows the results of applying the irregular clustered arrays with two different sizes,
Mx×My= 2 × 2 for the outer array elements and Mx×My= 5 × 5 for the inner array elements. As

(a) Radiation patterns (b) Weights of the fully array without error

(c) Weights of the 2 × 2 and 5 × 5 irregular arrays (d) Weights of the fully array with error

Figure 4. Results of irregular clustered arrays with two different sizes Mx × My = 2 × 2 and
Mx × My = 5 × 5 for an original planar array with Nx × Ny = 30 × 30.

Figure 5. Directivity versus error variance.
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Figure 6. SLL versus error variance.

(a) Regional error with 25% (b) Radiation patterns

(c) Weights of the corrected fully array (d) Weights of the fully array with 25% regional error

Figure 7. Results of regular clustered arrays with 25% regional error for an original Dolph planar
array with Nx × Ny = 30 × 30.
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in the previous example, the patterns of the initially ideal planar array without clusters and the fully
planar array with error are also shown in this figure. Again, the clustered array is capable to effectively
reduce the sidelobe error pattern.

Next, the variations of the directivity and the sidelobe level as a function of the error variance
are investigated for both regular and irregular clustered arrays. The sizes of the clusters are as in the
previous examples. The results of the fully planar array without clusters are also shown for comparison
purpose. Fig. 5 shows the variations of the directivity, while Fig. 6 shows the variations of the sidelobe
error pattern. It can be seen that the directivities of the clustered arrays are almost same as that of
the original planar array, whereas the peak sidelobe level of the original fully planar array is found to
be more changeable than that of the clustered array. These results fully confirm the effectiveness of the
proposed regular and irregular clustered arrays.

3.3. Scenario 3: Regional Errors with Regular Clustered Arrays

In this scenario, a 30 × 30 Dolph-Chebyshev excited array with SLL = −30 dB is considered as the
initial planar array where its corresponding radiation pattern is assumed to be the desired error-free
one. Then, the clustered elements along with the genetic algorithm are used to restore the array pattern
under regional error.

(a) Radiation patterns (b) Regional error with 50%

(c) Weights of the 2 × 2 regular clustered array (d) Weights of the fully array with regular error

Figure 8. Results of regular clustered arrays with 50% regional error.
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In the first example of this scenario, we assumed that the error affected the amplitude elements
in the first quadrant of the array aperture (i.e., the error percentage was 25% as shown in Fig. 7(a)
with grey color). Fig. 7(b) shows the comparison between the original Dolph, fully planar arrays with
and without errors, and the restored pattern. Figs. 7(c) and 7(d) show the corresponding amplitude
excitations for each case. From this figure, it is observed that the peak SLL of the damaged pattern
was at level −26 dB.

In the second example of this scenario, the error percentage was chosen to be 50%, and regular
clustered with size 2 × 2 was used for each cluster. Fig. 8 shows the results.

Finally, the error percentage was chosen to be 75%, and irregular clustered arrays with two different
sizes 2 × 2 and 3 × 3 were used (see Fig. 9).

Figure 9. Results of regular clustered arrays with 75% regional error.

4. CONCLUSIONS

It is found from the presented results that the directivity and sidelobe pattern of the conventional fully
planar arrays were greatly affected under the presence of random or regional amplitude errors. This
problem was effectively solved with the proposed clustered arrays where the sidelobe error pattern was
maintained at an acceptable limit, and the error effects were minimized. For an array with size 30× 30
of elements, the directivities of the regular and irregular clustered arrays were found approximately
between the values 23.5 dB and 23.6 dB for a range of error variance between 0.1 and 1, while the peak
sidelobe variations were between −29 and −31 dBs which are very near the desired limit −30 dB. In view
of the above, the clustered arrays represent a good solution for both error minimization and complexity
reduction.
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