1. Li, T., G. B. Yang, P. X. Wang, et al. "High-frequency radar aircraft detection method based on neural networks and time-frequency algorithm," IET Radar Sonar Navig., Vol. 7, No. 8, 875-880, 2013.
doi:10.1049/iet-rsn.2012.0228
2. Weinberg, G. V., "Assessing Pareto fit to high-resolution high-grazing angle sea clutter," IET Electron. Lett., Vol. 47, 516-517, 2011.
doi:10.1049/el.2011.0518
3. Liu, J., N. Fang, B. F. Wang, and Y. J. Xie, "Scale-space theory-based multi-scale features for aircraft classification using HRRP," Electron. Lett., Vol. 52, 475-477, 2016.
doi:10.1049/el.2015.3583
4. Lei, S., X. Qiu, Y. Zhang, L. Huang, and D. Chibiao, "Analysis of the multipath scattering effects in high-resolution SAR images," IEEE Geosci. Remote Sens. Lett., Vol. 17, No. 4, 616-620, Apr. 2020.
doi:10.1109/LGRS.2019.2930527
5. Zhang, G., R. Li, and D. Wang, "A review of target classification methods for low-resolution radar," Digital Communication World, Vol. 161, No. 5, 288, 2018.
6. Bell, M. R. and R. A. Grubbs, "JEM modeling and measurement for radar target identification," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, 73-87, Jan. 1993.
doi:10.1109/7.249114
7. Li, Q., "Analysis of modulation characteristics on return signals from aircraft rotating blades in the conventional radar," Journal of University of Chinese Academy of Sciences, Vol. 30, No. 6, 829-838, 2013.
8. Shao, Y., H. Wang, H. Zhang, and H. Chen, "Target recognition of low-resolution radar based on waveform feature," Shipboard Electronic Countermeasure, Vol. 38, No. 4, 62-65+69, 2015.
9. Zhu, Z. and J. Zhou, "Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique," J. Cent. South Univ. Technol., Vol. 18, 809-815, 2011.
doi:10.1007/s11771-011-0766-7
10. Li, F., D. Hu, C. Ding, and W. Zhang, "InSAR phase noise reduction based on empirical mode decomposition," IEEE Geoscience and Remote Sensing Letters, Vol. 10, 1180-1184, 2013.
doi:10.1109/LGRS.2012.2226233
11. Xue, W., X. Dai, J. Zhu, Y. Luo, and Y. Yang, "A noise suppression method of ground penetrating radar based on EEMD and permutation entropy," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 10, 1625-1629, Oct. 2019.
doi:10.1109/LGRS.2019.2902123
12. Pouraimis, G., A. Kotopoulis, E. Kallitsis, and P. Frangos, "Characterization of three-dimensional rough fractal surfaces from backscattered radar data," Elektronika Ir Elektrotechnika, Vol. 23, No. 4, 45-50, 2017.
doi:10.5755/j01.eie.23.4.18721
13. Azzaz, N. and B. Haddad, "Classification of radar echoes using fractal geometry," Chaos, Solitons & Fractals, Vol. 98, 130-144, 2017.
doi:10.1016/j.chaos.2017.03.017
14. Li, Q. S., J. H. Pei, and X. Y. Liu, "Self-a±ne fractal modelling of aircraft echoes from low-resolution radars," Defence Science Journal, Vol. 66, No. 2, 151-155, 2016.
doi:10.14429/dsj.66.8423
15. Cherouat, S., F. Soltani, F. Schmitt, et al. "Using fractal dimension to target detection in bistatic SAR data," Signal Image & Video Processing, Vol. 9, No. 2, 365-371, 2015.
doi:10.1007/s11760-013-0453-2
16. Li, Q. and W. Xie, "Target classification with low-resolution surveillance radars based on multifractal features," Progress In Electromagnetics Research B, Vol. 45, 291-308, 2012.
doi:10.2528/PIERB12091509
17. Fan, Y., "Study on weak ``Target detection based on fractal and the multifractal analysis in sea clutter background'',", Master's Degree Thesis of Xidian University, 2016.
18. Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings Mathematical Physical & Engineering Sciences, Vol. 454, No. 1971, 903-995, 1998.
doi:10.1098/rspa.1998.0193
19. Wu, Z. and N. E. Huang, "Ensemble empirical mode decomposition: a noise-assisted data analysis method," Advances in Adaptive Data Analysis, Vol. 1, No. 1, 1-41, 2009.
doi:10.1142/S1793536909000047
20. Li, M., J. Wu, L. Zuo, W. Song, and H. Liu, "Aircraft target classification and recognition algorithm based on measured data," Journal of Electronics & Information Technology, Vol. 40, No. 11, 2606-2613, 2018.
21. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, 1982.
22. Grassberger, P., "Generalized dimensions of strange attractors," Physics Letters A, Vol. 97, No. 6, 227-230, 1983.
doi:10.1016/0375-9601(83)90753-3
23. Hasey, T. C., M. H. Jenson, L. P. Kadanoff, et al. "Fractal measures and their singularities: The characterization of strange sets," Physics Review A, Vol. 33, No. 2, 1141-1151, 1986.
doi:10.1103/PhysRevA.33.1141
24. Hentschel, H. G. E. and I. Procaccia, "The infinite number of generalized dimensions of fractals and strange attractors," Physica D, Vol. 8, No. 3, 435-444, 1983.
doi:10.1016/0167-2789(83)90235-X
25. Li, Q. S. and W. X. Xie, "Target classification by surveillance radar based on multifractal features," Application Research of Computers, Vol. 30, No. 2, 405-409, 2013.
26. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2nd Ed., 259-264, John Wiley and Sons, 2001.
27. Wang, Z., "Research on text classification based on SVM algorithm,", Master's Degree Thesis of Jilin University, 2017.
28. Zhang, D., J. Zhang, K. Yao, M. Cheng, and Y. Wu, "Infrared ship-target recognition based on SVM classification," Infrared and Laser Engineering, Vol. 45, No. 1, 179-184, 2016.
29. Geng, R., D. Cui, and B. Xu, "Support vector machine-based combinational model for air traffic forecasts," J. Tsinghua Univ. (Sci.&Tech.), Vol. 7, 1205-1208, 2008.
30. Wu, S., Q. Li, and H. Zhu, "Self-affine fractal analysis and target classification of aircraft echoes," Journal of Gannan Normal University, Vol. 37, No. 6, 45-49, 2016.
31. Li, Q., X. Xie, H. Zhu, and Q. Wu, "Fractal characteristics analysis and target classification of low-resolution radar aircraft echoes using fractional order fourier domain," Application Research of Computers, Vol. 35, No. 9, 2869-2872+2876, 2008.