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Aircraft Target Classification Method Based on EEMD
and Multifractal
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Abstract—Due to the limitation of low-resolution radar system and the influence of background clutter
in the detection process, it is hard for low-resolution radars to classify and identify aircraft targets.
To solve the above problems, a classification method for aircraft based on Ensemble Empirical Mode
Decomposition (EEMD) and multifractal is proposed, in which the intrinsic modes are obtained by
EEMD, and the waveform entropy in the Doppler domain is used to screen and reconstruct the intrinsic
modes. The multifractal feature of the target echo data is extracted from the reconstructed signal,
and then the aircraft target classification and recognition experiment is carried out with support vector
machine. The experimental results show that the feature data extracted by ensemble empirical mode
decomposition and multifractal analysis can be used for the classification and identification of civil
aircraft and fighter aircraft, and the accuracy rate is about 98.5%, which is higher than that of time-
domain multifractal method.

1. INTRODUCTION

Along with the development of modern military technology, radar plays a more and more crucial role
in modern war, and the identification of targets has been the focus of research in related fields. In
the current research status, high-resolution radars are more favored by most scholars [1–4]. In the
radar target recognition achievements, most of them are obtained with high-resolution radar as the
experimental object. However, there are still a large number of low-resolution radars in service in
China that cannot determine accurate range and azimuth [5]. There is practical significance to improve
the identification ability of low-resolution radars for detecting targets through signal processing. The
aircraft is an important target for such radar surveillance, and the non-rigid vibration and rotating parts
of the fuselage will introduce different nonlinear modulations on the echo. In general, the micro-Doppler
modulation effect of aircraft target echo is primarily generated by the motion of the rotating parts on
board. The Doppler spectral width of the micro-component of echo is mainly determined by the valid
length and number of blades of the rotating parts, and the spectral line interval depends on the number
and speed of the blades [6]. In [7], it is pointed out that the effective paddles of jet aircraft are short, and
the number of paddles is large, which often requires the observation radar to have high working frequency
band and pulse heavy frequency. Therefore, the aircraft target classification method based on JEM
modulation feature is not applicable to jet aircraft identification for low-resolution radar echo data. Due
to the intrinsic differences in the physical structure and material composition of different types of aircraft
targets, the micro-components of their echoes still have distinct distribution characteristics. It will be
helpful for the classification of aircraft targets if modulation, which can reflect the characteristics of
aircraft targets, can be extracted effectively. In the past studies, Shao [8] et al. realized the identification
of aircraft targets based on waveform features after analyzing the characteristics of low-resolution radar.
Up to now, many methods [9–11] have been proposed to extract radar echoes from aircraft targets,
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such as singular value decomposition, periodic diagram, and empirical mode decomposition. However,
they are not good at recognizing aircraft targets under short irradiation time and low pulse repetition
frequency. Therefore, the above methods are difficult to achieve accurate classification of targets for
low-resolution radar echo data.

The results show that the fractal theory performs well [12–15] in the modeling of various radar
clutters. Aircraft and other human-made objects do not have fractal characteristics. Still, their existence
will change the fractal behavior of clutter, and different types of aircraft targets have different effects on
clutter. Li and Xie [16] came to the conclusion that defining multiple effective characteristic parameters
by multifractal spectrum is helpful to realize aircraft target classification. Fan [17] proposed local
multifractal spectrum to improve the performance of weak target detection.

In recent years, fractal and other nonlinear analysis methods have been introduced into the time-
domain or frequency-domain analysis of conventional low-resolution radar echoes, and good results have
been obtained under specific experimental conditions. However, in the background of strong clutter, the
fractal and other nonlinear characteristics of radar echo will be more like the characteristics of clutter.
Also, the fuselage component in the echo has little effect on the classification and identification of
targets. If the influence of airframe translational component can be eliminated, the correct classification
and identification rate of targets can be further improved. Ensemble Empirical Mode Decomposition
(EEMD) is a noise-assisted data analysis method, which can separate the airframe translational
component and the micro-motion component of aircraft echo. Based on the above analysis, EEMD and
multifractal are used to analyze and extract the characteristics of aircraft target echo of conventional
low resolution radar, and the effectiveness of features in aircraft target classification and identification
is discussed.

2. THEORETICAL BASIS

2.1. Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD), proposed by Huang et al. [18] in 1998, which is an analytical
processing method suitable for distribution parameters or distribution law with time changes, nonlinear
signals. Through time-scale features, the signal is decomposed into several intrinsic modal functions
(IMFs) and a residual term. This method has been widely used in various fields for some time. However,
with the application of many scholars, the defects of modal aliasing have been exposed. In the following
research, Wu and Huang [19] improved EMD through the noise in 2009 to make up for the previous
shortcomings. The improved new method, which is called ensemble empirical mode decomposition
(EEMD), solves the defects of EMD by adding white noise with uniform distribution for many times.
The specific steps of EEMD algorithm are as follows:

(1) Suppose the original signal to be f(t), and set the amplitude of the added white noise to be a
and the overall average number to be M ;

(2) Add white Gaussian noise with amplitude a;

fm(t) = f(t) + a · nm(t) (1)

in the above formula, fm(t) represents the signal with the mth addition of noise, while nm(t) represents
the Gaussian white noise with an amplitude of 1.

(3) With the EMD method, the signal is decomposed into a range of IMFs, m = m + 1;
(4) Cycle through steps (2) and (3), until m = M ;
(5) The resulting series of intrinsic modal components are averaged over the whole population to

obtain the final IMF. The calculation formula is as follows:

IMFi =
M∑

m=1

IMFi,m

M
(2)

where IMFi,m represents the ith intrinsic modal function obtained by EMD decomposition of the signal
with the mth white noise added.
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2.2. Doppler Spectrum and Its Waveform Entropy

The characteristic of the Doppler spectrum has great application potential. It can reflect the geometric
structure, scattering characteristics, and motion characteristics of the target. The conventional radar
targets in this paper have different physical parameters and working modes, so the corresponding target
rotating parts will produce different periodic modulations to radar echo when they operate, which is
reflected on the echo-Doppler spectrum.

The concept of entropy was first proposed by Clausius in 1865 and is widely used in
thermodynamics. With the deepening of theoretical and applied research, the nature of entropy has
been gradually recognized, and its application has also been stepwise expanded on other fields. In this
paper, waveform entropy [20], which measures the evenness of signal energy distribution, is introduced
to help the IMF in its selection. For the signal y, its waveform entropy is as follows:

Entropy (y) = −
N∑

i=1

pi log2 pi (3)

where,

pi = |yi|
/ N∑

i=1

|yi| (4)

yi is the ith value of the signal y. It can be seen from the definition of Equation (3): The smaller the
waveform entropy is, the more concentrated the waveform distribution is. The higher the waveform
entropy is, the more uniform the waveform distribution is.

2.3. Multifractal Theory

The fractal theory, which is proposed by Mandelbrot, is widely used to describe some complex
phenomena [21] with nonlinear concepts such as scale invariance, self-similarity, self-affine property,
and fractal dimension. However, there is no strict definition of multifractal, and its main idea can
be described as follows: The fractal of a region is divided into many smaller regions, and the growth
probability of the first small region is denoted as pi(ε). Generally speaking, the growth probabilities of
different regions are different, which is usually represented by the index [22]:

Pi(ε)∞εσi i = 1, 2, · · · , N (5)

where the scale of each small region is denoted as ε; the total number of small regions is denoted
as Nε; and σi represents the growth probability of each small regional fractal. When different small
regional fractal geometries have different local partial shape dimensions, the collection of these small
regional fractal geometries can be called multifractal geometry. On the contrary, when different small
regional fractal bodies have the same or similar local partial shape dimensions, the collection of these
small regional fractal bodies can be called single fractal geometry. The multifractal can be divided into
regular and irregular ones, and the corresponding multifractal spectrum can be obtained by statistical
physics. Calculate both sides of Equation (4) to obtain a partition function [23]:

Γ(q, ε) =
N∑

i=1

P q
i (ε) = ετ(q) (6)

In practical application, the value range of q can be determined according to the requirements of
practical problems. If q ≥ 1 in the above equation, the larger subset of pi(ε) in the fractal body plays a
greater role. If q ≤ 1 in the above equation, the smaller subset of pi(ε) in the fractal has a smaller role.
The multifractal spectrum f(σ), which is known as singular spectrum function, can further reflect the
characteristics of the growth distribution probability of the fractal body on the whole.



226 Hu et al.

3. SIGNAL ANALYSIS AND FEATURE EXTRACTION

After an in-depth understanding of EEMD and multifractal theory, the corresponding radar echo data
model is established, and the EEMD and multifractal method are applied to the classification and
identification of two kinds of aircraft targets.

Before EEMD, the initial values of the two parameters α and M need to be set. Whether the IMFs
obtained by EEMD decomposition are reasonable depends on these two parameters. If the value of α is
too small, the local extreme value distribution of the original signal will not be affected; if the value of
α is too large, the actual signal will be submerged by α, resulting in less real signal extracted from the
actual signal during decomposition. In theory, the larger the value of the overall average number of times
is the better. However, increasing the value will lead to an increase in the running time of the program,
so it is necessary to set an appropriate M . In addition, the purpose of increasing the average number
of the population is to reduce the interference of the added white noise to the decomposition results.
When the interference error of the added white noise to the final results is lower than the acceptable
value, the increase of the average number of the population can be stopped. Wu and Huang [19] of
Taiwan Central University believe that the value should conform to the following equation:

ln σ +
α

2
ln M = 0 (7)

In the above equation, σ represents the standard deviation of the original signal, and M represents
the average number of population. In a general way, the weight coefficient is 0.2, and the decomposition
effect is good when the average number of times is several hundred.

α = 0.2σ (8)

In this experiment, the ratio of the standard deviation of white noise to the original signal is set
as 0.2. According to the mathematical formula and general conditions, the value of M is set as 100 on
the premise of ensuring a good decomposition effect.

Taking the echo data of a group of civil aircraft flying towards the radar station as an example,
this group of data was processed by EEMD to obtain a series of IMFs, and the Doppler spectrum of
each IMF signal is analyzed. Figure 1 shows the IMFs obtained by EEMD. Figure 2 shows the Doppler
spectrum of IMFs.

For each IMF obtained by EEMD as shown in Figure 1, waveform entropy Eq. (3) was used
to calculate the waveform entropy in the Doppler domain, and IMF was selected according to the
property of waveform entropy, in descending order IMF2, IMF3, IMF4, IMF5, IMF6, IMF7, IMF8,
IMF9, IMF1, and IMF10 It can be seen from the results that for the noise components introduced in
the EEMD decomposition process, the Doppler spectrum distribution of IMF2 is wide and uniform, and
the waveform entropy is the largest. The waveform entropy of IMF3 is the second, and IMF3 is greatly
affected by the noise introduced during the decomposition of EEMD. However, IMF1, the translational
component of echo body, and IMF10, which reflects echo trend, have smaller waveform entropy and
stronger DC component. In the following study, IMF4, IMF5, IMF6, IMF7, IMF8, and IMF9 are
recombined, and the multifractal analysis of the reconstructed signals is performed. On this basis,
choosing appropriate multifractal characteristic parameters as the classification criteria can improve
the accuracy. In this study, the following multifractal feature parameters are defined as classification
features.

(1) Width of generalized fractal dimension

ΔD = Dq max − Dq min (9)

in the formula, the general dimension, Dq, is defined as [24]:

Dq =
τ(q)
q − 1

(10)

in addition, Dq max represents the maximum value of generalized dimension, and Dq min represents the
minimum value of generalized dimension.

(2) Mass index symmetric degree

Rτ =
∣∣∣∣max τ(q)
min τ(q)

∣∣∣∣ (11)
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Figure 1. IMFs obtained by EEMD.

Figure 2. Doppler spectrum of IMFs.

where max τ(q) is the maximum value of mass index curves, and likewise, min τ(q) is the minimum
value of mass index curves.
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(3) Spectrum width
Δσ = σmax − σmin (12)

in Equation (12), σmax and σmin are the maximum and minimum values of the exponent, respectively.
Figure 3 shows the scatter distribution of the three multifractal features. In this figure, the

coordinates of the three dimensions are respectively three features (Width of generalized fractal
dimension, Spectrum width, and Mass index symmetric degree). The blue points are represented
according to the multi-fractal features of civil aircraft, while the red points are represented according
to the multi-fractal features of fighter aircraft. As can be seen from the figure, the red points and blue
points are clearly distinguished, with only a few points in staggered distribution. It can be seen that the
difference between the two types of aircraft is obvious, and only a small part of them overlap. Therefore,
based on these three multifractal features, the two kinds of aircraft targets can be classified effectively.

Figure 3. Scatter distribution of three multifractal features.

4. AIRCRAFT TARGET CLASSIFICATION EXPERIMENTS

The application of the above characteristics in aircraft target classification is discussed by using the
measured target echo data below. The data used in the following experiments are radar echo data of
a certain civil aircraft and fighter aircraft. The radar operated in the VHF band with a pulse width of
25 µs and a pulse repetition frequency of 100 Hz.

For two different kinds of aircraft, the recognition experiments were carried out according to two
flight attitudes, namely, toward and off the radar station. In the toward-the-radar-station experiment, a
total of 1536 groups of randomly scrambled echo data were selected, and the echo numbers of both targets
were 768 groups. In the-off-the-radar-station experiment, 1536 groups of randomly scrambled echo data
were also selected, and the echo numbers of both targets were 768 groups. Ref. [25] proposed a method to
classify aircraft targets by using multifractal characteristics, which has the good overall performance. In
the process of classification, support vector machine (SVM), which has strong generalization ability and
fast convergence, is selected [26]. Wang [27] applied an SVM to news text classification model and proved
the advantages and practicability of multi-kernel SVM with experimental results. A study on realizing
the recognition of infrared ship targets using offline sample base training to obtain SVM classifier was
done by Zhang et al. [28]. Geng et al. [29] used an SVM to establish a prediction model for air traffic
flow prediction and concluded that the SVM model was superior to the polynomial model and robust
model. When multifractal features are used for category, Gaussian kernel function is selected as the
kernel function of SVM in this paper. To adjust each parameter within the range of computer running
time, the accuracy of aircraft target classification is compared to determine whether the parameter
setting is optimal. The following data are obtained based on the essential parameter chosen reasonably.
Table 1 lists the correct classification rates (CCR) of two sets of data under two analysis methods.
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Table 1. CCR of classification and recognition.

item compared
Multifractal characteristics EEMD and multifractal characteristics

Toward the
radar station

Off the
radar station

Toward the
radar station

Off the
radar station

civil aircraft 95.05% 96.09% 98.05% 99.22%
fighter aircraft 95.96% 97.01% 98.44% 98.31%
Average CCR 95.51% 96.55% 98.25% 98.77%

The data obtained by the two categories of comparison items in Table 1 are based on the same data
set. The accuracy rate obtained by using the EEMD and multifractal feature is shown on the right side
of Table 1, and the accuracy rate obtained by using the multifractal feature of the data not processed by
EEMD is shown on the left side of Table 1. It can be found that in the absence of EEMD, the recognition
rate of the two types of aircraft is about 95%. In contrast, after the EEMD, the recognition rate of the
two types of aircraft has been improved, with the accuracy reaching more than 98%. The recognition
rate of the correct classification has been improved by more than two percentage points. As the same
algorithm has different effects in different data sets, experiments with similar data sets are selected for
comparison. Wu et al. [30] used self-affine fractal features to classify similar data sets, and the overall
recognition accuracy was about 91%. When Li et al. [31] processed similar data sets by using fractional
Fourier domain multifractal features, the average recognition rate of flight toward the radar station
was 93.23%, while that of flight off the radar station was 99.28%. Through the comparison of these
three methods, it can be considered that the method in this paper has a certain validity. The specific
confounding matrices based on EEMD and multifractal feature experiments are shown in Table 2 and
Table 3.

Table 2. Confusion matrix when flying toward the radar station.

item compared civil aircraft fighter aircraft
civil aircraft 753 15

fighter aircraft 12 756

Table 3. Confusion matrix when flying off the radar station.

item compared civil aircraft fighter aircraft
civil aircraft 762 6

fighter aircraft 13 755

As can be seen from the data in Table 2 and Table 3, the classification effect of the civil aircraft
and fighter aircraft is relatively good, but about 1.5% of data are still misclassified. The reasons for
the loss are as follows: although the target of the civil aircraft in this experiment is larger than the
target of the fighter, the nonlinear modulation of the target echo is more intense, but because the echo
data of the civil aircraft are recorded in the distance range of 100 ∼ 130 km, and the echo data of the
fighter aircraft are recorded in a distance range of 60 ∼ 90 km, so that their echo signal-to-clutter ratios
may be equivalent, resulting in a certain degree of confusion in echo data samples. In addition, the
parameters of the EMD of the set in this paper are selected as empirical estimates, which may not be
the optimal parameters applicable to the data set, and the fractal features in this paper are artificially
defined, so there may be better fractal features. From the experimental process, the first derivative
of the fractal dimension after EEMD processing as the eigenvalue can also be used to classify aircraft
targets. Furthermore, we intend to combine deep learning with signal processing in an attempt to find
a more intelligent processing system.
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5. CONCLUSIONS

According to the principle of EEMD, each component of the target aircraft can be decomposed
reasonably. According to the fractal theory, the multifractal characteristics of aircraft targets can be
extracted. In this paper, EEMD is first used to process the data to separate the fuselage translational
component and the fretting component of the aircraft echo. Then, according to the waveform entropy
in the Doppler domain, the optimal IMFs of aircraft target echo are selected again, and the components
that have little effect on target classification and identification are removed. Then the multifractal
characteristics of the reconstructed signal are extracted. Taken together, these results suggest EEMD
can enhance the multifractal characteristics of target echo data of these two types of aircraft. The
average classification recognition rate of the two types of aircraft data obtained by using the multifractal
feature processed by EEMD is improved by about 3%. Although this method performs well in this
experimental data set, it has not been tested in other data sets. Therefore, the generalization ability of
this method needs to be verified in subsequent studies.
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