1. Zaker, R. and A. Sadeghzadeh, "Passive techniques for target radar cross section reduction: A comprehensive review," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, 2020, https://doi.org/10.1002/mmce.22411.
doi:10.1002/mmce.22411
2. Sengupta, S., H. Council, D. R. Jackson, and D. Onofrei, "Active radar cross section reduction of an object using microstrip antennas," Radio Science, Vol. 55, 2020, https://doi.org/10.1029/2019RS006939.
doi:10.1029/2019RS006939
3. Knott, E. F., J. F. Schaeffer, and M. T. Tuley, "Radar cross section," SciTech, 2004.
4. Zikidis, K., A. Skondras, and C. Tokas, "Low observable principles, stealth aircraft and anti-stealth technologies," Journal of Computations & Modelling, Vol. 4, No. 1, 129-165, 2014, ISSN: 1792-7625 (print), 1792-8850 (online), Scienpress Ltd., 2014.
5. Baum, C. E., E. J. Rothwell, Y. F. Chen, and D. P. Nyquist, "The singularity expansion method and its application to target identification," Proceedings of the IEEE, Vol. 79, No. 10, 1481-1492, Oct. 1991.
doi:10.1109/5.104223
6. Anuradha, S. and J. Balakrishnan, "Discrimination of closely resembling PEC targets based on natural resonant frequencies," IEEE-MTT International Microwave And RF Conference (IMARC), Bengaluru, Dec. 2014.
7. Anuradha, S. and J. Balakrishnan, "Resonance based discrimination of targets with minor structural variations," 2016 Asia-Pacific Microwave Conference (APMC), New Delhi, 2016.
8. Anuradha, S. and J. Balakrishnan, "Radar target discrimination of real size aircraft with minor structural variations: Challenges and solutions," Progress In Electromagnetics Research C, Vol. 102, 139-148, 2020.
doi:10.2528/PIERC20031805
9. Luiza de, C. F., M. A. Alves, and M. C. Rezende, "Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties," Journal of Aerospace Technology and Management, Vol. 2, No. 1, 63-70, 2010.
doi:10.5028/jatm.2010.02016370
10. Rao, S. M., C.-C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Transactions on Antennas and Propagation, Vol. 39, 627-631, May 1991.
doi:10.1109/8.81490
11. Analoui, M. and Y. Kagawa, "Electromagnetic scattering from conductor-coated material bodies," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 4, No. 4, 287-299, 1991.
doi:10.1002/jnm.1660040404
12. Howell, W. E. and H. Uberall, "Complex frequency poles of radar scattering from coated conducting spheres," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 6, 624-627, Jun. 1984.
doi:10.1109/TAP.1984.1143382
13. Vollmer, H. and E. J. Rothwell, "Resonance series representation of the early-time field scattered by a coated cylinder," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2186-2190, Aug. 2004.
doi:10.1109/TAP.2004.832331
14. Wierzba, J. F. and E. J. Rothwell, "E-pulse diagnostics of curved coated conductors with varying thickness and curvature," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 9, 2672-2676, Sept. 2006.
doi:10.1109/TAP.2006.880786
15. Rothwell, E. J. and G. D. Dester, "E-pulse diagnostics of a coated conductor using a nonplanar interrogation field," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 587-590, Feb. 2009.
doi:10.1109/TAP.2008.2011409
16. Chantasen, N., A. Boonpoonga, and S. Burintramart, "Radar target identification of coated object using Cauchy method," IEEE Conference on Antenna Measurements & Applications (CAMA)-2015, 1-3, Chiang Mai, 2015.
17. Chauveau, J., N. de Beaucoudrey, and J. Saillard, "Modification of resonance poles of a conducting target by a dielectric coating," 2007 European Radar Conference, 440-443, Munich, 2007.
doi:10.1109/EURAD.2007.4405032
18. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. Power Delivery, Vol. 14, No. 3, 1052-1061, Jul. 1999.
doi:10.1109/61.772353
19. FEKO Suite 7 User Manual, EM Software and Systems (EMSS), 2014.
20. Raju, A. U., "Radar cross section (RCS) analysis of complex shaped radar absorbing material (RAM) coated bodies,", Bengaluru, May 2013 (Thesis).
21. Kolanowska, A., D. Janas, A. P. Herman, R. G. Jerysiak, T. Gizwski, and S. Boncel, "From blackness to invisibility - Carbon nanotubes role in the attenuation of and shielding from radio waves for stealth technology," Carbon, Vol. 126, 31-52, 2018, ISSN 0008-6223, https://doi.org/10.1016/j.carbon.2017.09.078.
doi:10.1016/j.carbon.2017.09.078