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Resonance Based Discrimination of Stealth Targets Coated
with Radar Absorbing Material (RAM)
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Abstract—For the first time, a real sized complex target that is coated with an absorber material
is discriminated from the uncoated one using an aspect independent discrimination method based
on natural resonances. This resonance based technique provides a real-time, accurate and aspect
independent solution for stealth target discrimination. First, the discrimination is studied for a
complex shaped aircraft of electrical size 1.5λ. The Perfectly Electrically Conducting (PEC) target
is coated uniformly with sintered nickel-zinc-ferrite, a magnetic Radar Absorbing Material (RAM)
with complex dielectric and magnetic properties. The resonant range Radar Cross Section (RCS) of
the aircraft for different coating thicknesses is computed using the Method of Moments (MoM). The
resonances contained in the RCS are extracted using the vector fitting method, and the dominant
resonances representing the target are determined by applying the power criteria. The variation in
the pole placements with the increasing coating thickness is also studied. A one number quantifier of
discrimination — “Risk” in dB is defined to express the amount of mismatch between the compared
targets. Further, the discrimination technique is also studied for an aircraft of electrical length, 7λ. A
Risk value of 2 dB and more is obtained in this study at all aspects. This demonstrates the capability
of the algorithm to discriminate between targets of identical structure but with different material
compositions.

1. INTRODUCTION

A stealth target avoids detection by enemy radars by reducing its Radar Cross Section (RCS). A
number of RCS reduction (RCSR) techniques are employed which are broadly classified as active RCSR
and passive RCSR [1]. Active RCSR techniques involve cancelling the radar echoes suitably at the
target by employing active devices [2]. One of the passive techniques used to reduce the RCS of
a target is the distributed loading [3]. It involves coating the surface of the aircraft with a radar
absorbing material (RAM) that has high loss factor. However, a particular RAM is generally effective
in absorbing only certain frequencies that it is designed for. Although RCSR provides stealth to the
targets at far-off distances, they are not completely undetectable in the closer ranges [4]. Within the
region where the stealth aircraft can be detected, a real-time, non-cooperative identification system
which is automatic and accurate is indispensable for initiating appropriate countermeasure/s. In this
context, the discrimination of targets that are coated with absorber from their uncoated counterparts
is of practical interest in today’s warfare scenario which is the main focus of this paper.

The two vital requirements of an automatic and real-time target discrimination system are: 1. The
system should involve very little time for drawing accurate results, and 2. The technique should be
capable of discriminating the target irrespective of the direction from which it is viewed, i.e., it should
be an aspect independent process.
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In resonance based discrimination techniques, the natural resonant frequencies (NRFs) contained
in the late time returns of the target form the target features. NRFs are the most suited features for
target discrimination as they are aspect independent by nature while their values are influenced by the
size, shape, and composition of the target. This has been mathematically formulated as the Singularity
Expansion Method (SEM) by Baum et al. [5]. Based on SEM formulation, a discrimination technique
utilizing the natural resonances of the targets is developed in [6, 7]. The method is found to be effective
in discriminating the targets whose structural features match very closely but with minor variations.
The technique is found to be successful in discriminating canonical as well as complex shape conducting
targets of both electrically small and large targets. In [8], two large, real sized PEC F5 aircraft with
and without missiles are discriminated successfully by implementing this technique.

In the case of stealth targets coated with an absorber, the variation of resonance poles due to
composition variation forms the basis for the target discrimination. The dielectric properties of absorber
material are frequency dependent, and hence, the RCS reduction varies for different frequencies. The
attenuation of electromagnetic energy within the absorber material depends on factors such as electric
conductivity, dielectric loss, and penetration depth [9]. Therefore, the coating thickness influences the
amount of dissipation of the incident electromagnetic energy. A number of papers are available in
literature to understand the scattering mechanisms of a coated conducting body. These researchers
have studied the influence of the variation in thickness and dielectric constant of the coating on the pole
patterns in the complex-frequency plane for dielectrically-coated spheres [10–12]. It is demonstrated
that the frequency and the magnitudes of RCS are altered with the coating material property and
coating thickness. The changes in the permittivity and thickness of the coating on conducting cylinders
are analysed using the E-pulse technique in [13]. Wierzba and Rothwell have also used the E-pulse
method to study the changes in the material properties of a coated conducting cylinder with varying
curvature and coating thickness [14]. The E-pulse technique with a nonplanar interrogation field is used
to determine the material variations in [15]. It is shown that the variation in the dielectric constant
has more impact on the damping ratios, and the variation in coating thickness influences the pole
frequencies. A similar study of the effect of permittivity and coating thickness on poles and quality
factor of the poles is reported in [16, 17]. The resonance poles are shown moving closer to the vertical
axis, and the quality factor increases with the thickness and the relative permittivity of the coating.
These published results endorse the fact that the poles are sensitive to the material properties as well
as the thickness of the absorber. Thus, the natural poles of a target form the best suited features for
discriminating targets with different material compositions.

In this study, it is proposed to study the efficacy of the resonance based discrimination technique
developed in [6, 7] to discriminate targets that are structurally the same but with different material
compositions. In order to implement this, a sintered nickel-zinc-ferrite RAM with complex dielectric
and magnetic properties is used to coat the PEC target uniformly on its surface. First, the discrimination
technique is applied to distinguish 1.5λ aircraft model with and without absorber coating by determining
the ‘Risk’ defined to quantify the discrimination. Simultaneously, the variation in the pole locations of
the coated aircraft for different thicknesses of absorber coating is also studied. The poles of the aircraft
are extracted from their frequency domain RCS using the Vector Fitting algorithm [18]. As a second
example, the discrimination technique is applied to distinguish coated and uncoated, bigger aircraft
model which is a near representation of a real fighter aircraft, of electrical length 7λ in fuselage and
12λ wing span. The Risk is determined at various aspects to demonstrate the aspect independent
discrimination capability of the technique. The RCSs of the targets considered in this study are
computed using the commercially available CEM solver FEKO (ver.7) [19] run on a workstation with
16 Intel Xeon R©processors, 2.30 GHz, 126 GiB memory.

Section 2 deals with a brief review on the technique used for discriminating stealth targets. In
Section 3, the details of implementing the discrimination of coated bodies along with the results and
discussion are presented followed by the conclusions in Section 4.

2. DISCRIMINATION TECHNIQUE

According to the singularity expansion method [5], the late time returns from the target contain the
resonances that are dependent on the physical as well as the chemical composition of the target.
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The late time response r(t) of a target to a pulsed EM can be modelled as a sum of damped
exponentials with complex natural resonances as shown in Eq. (1).

r(t) =
∑N

k=1
Ake

σkt cos(ωkt + φk), t > tl (1)

Here, tl is the beginning of the late time response; Ak and φk are the aspect dependent amplitude and
phase of the kth mode, sk = −σk ± jωk, respectively; and N modes are assumed to be excited by the
incident wave. SEM considers the response as that of a linear time-invariant system whose response can
be represented in the s-domain as a transfer function modelled with simple poles as shown in Eq. (2).

R(s) =
∑2N

k=1

Ck

s − sk
(2)

Since the natural frequencies are independent of excitation while depending upon the detailed size,
shape, and composition of the target, these frequencies are unique representations of a target which
form the basis for target discrimination implemented in this study.

In this study, the natural resonant frequencies of targets are extracted from the late time returns
by using the Vector Fitting method [18]. The discrimination method is explained here briefly for the
sake of completeness. The ‘d’ dominant NRFs, sd of known target are identified using the criteria
described in [7] and are used to construct the distinction polynomial D (jω) =

∏
d (jω − sd) which

forms the database of the known target. The RCS A(ω) of the stealth (unknown) target determined in
the resonance range of (ω1 − ω2) is used to determine the risk factor using Eq. (3).

Risk factor =
∫ ω2

ω1

{
d3

dω3

[
|D(jω)|2 · A(ω)

]}2

dω (3)

The normalized Risk in identifying the unknown target as the database (known) target is defined using
Eq. (4). Ruk is the risk factor in identifying the unknown target as the known target, and Rkk is the
risk factor in identifying the known target with itself.

Risk =
Ruk

Rkk
=

∫ ω2

ω1

{
d3

dω3 [|Dk (jω)|2 · Au (ω)]
}2

dω

∫ ω2

ω1

{
d3

dω3 [|Dk (jω)|2 · Ak (ω)]
}2

dω

(4)

In decibels, Risk is expressed as

RiskindB = 10 log
(

Ruk

Rkk

)
(5)

3. DISCRIMINATION OF RAM COATED AND UNCOATED TARGETS

3.1.a. Discrimination of 1.5λ Aircraft: with and without RAM Coating

As the first example, a PEC 1.5λ aircraft model, shown in Fig. 1, is used as the database target. The
dimensions of the aircraft are presented in Table 1 [7].

3.1.b. Computation of RCS of the 1.5λ Aircraft Model

The PEC aircraft is modelled in CADFEKO [19]. The fuselage of the aircraft is aligned along the Z-
direction. The monostatic RCS responses are computed using the MoM solver at different aspect angles
varied from φ = 0◦; θ = [0 30 60 90 120 150 180] degrees, for a frequency range of 50 MHz–400 MHz
at 256 discrete points. The frequency range includes the half lambda frequencies corresponding to
maximum and minimum lengths of the aircraft. The frequency response of the PEC aircraft to linearly
polarized signal of unit amplitude computed at different aspect angles is shown in Fig. 2.

The entire aircraft is coated uniformly with a magnetic RAM of sintered nickel-zinc-ferrite with
dielectric and magnetic properties 27+j54 and 15+j45, respectively, at 100 MHz [3]. Usually the
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Figure 1. 1.5λ aircraft model.

Table 1. Dimensions of 1.5λ aircraft model.

Parameters Value in meters
Length of aircraft 1
Length of front wing 0.92
Length of back wing 0.38
Distance a1 0.4
Placement of front wing from head 0.2
Width of the wings 0.1
Thickness of wings 0.05
Radius of cylinder 0.05
Cone height 0.1

Figure 2. RCS response of 1.5λaircraft model (PEC).

electrical and magnetic properties of the absorber are specified at a particular frequency. The maximum
reduction in RCS is achieved when the coating thickness is of the order of quarter wavelength [20]
corresponding to the frequency specified. Therefore, the discrimination is carried out for the coating
thickness when the absorption is most effective. The EDITFEKO feature is used to set the material
properties of the coating using the CO card [19]. The RCS of the coated aircraft was computed for
four different coating thicknesses ‘tc’ of 1 mm, 5 mm, 10 mm, and 14.02 mm (tc = 14.02 mm corresponds
to the thickness for which maximum absorption occurs at 100 MHz). The frequency response of the
coated aircraft is computed similar to the PEC counterpart at the aspect angles ranging from [θ = 90;
φ = 0, 30, 60, 90, 120, 150, 180] degrees at 256 discrete frequencies between 50 MHz and 400 MHz.
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Figure 3. RCS of coated 1.5λ aircraft (tc = 1 mm).

Figure 4. RCS of coated 1.5λ aircraft (tc = 5 mm).

The frequency responses of the coated aircraft for different coating thicknesses are shown in Figs. 3–6.
As expected, it is observed that the overall amplitudes are drastically reduced with the increase in
coating thickness irrespective of the aspect angle. Also, the RCS reduction is maximum at 100 MHz in
accordance with the absorber specification. The RCS has maximum reduction (< 0.03 m2) at 100 MHz
in the case of tc = 14.02 mm (Fig. 6).

3.1.c. Determination of the NRFS OF 1.5λ Aircraft

Discrimination of aircraft with and without coating requires the computation of dominant NRFs of the
database target alone, which is the PEC aircraft (without RAM coating). However, it is interesting to
understand the variations in the pole locations of the coated aircraft for different coating thicknesses
and compare them with that of the uncoated PEC aircraft. The dominant NRFs of the aircraft with
different coating thicknesses are determined by extracting VF poles from the frequency response data
and selecting those poles as the dominant poles whose power contribution to the signal is more than
10% of the total power in the signal [7]. The dominant poles of coated aircraft with different thicknesses
and the PEC aircraft poles determined are plotted in Fig. 7. Although the resonant poles are complex
conjugates, only the left half of s-plane (LHP) poles with positive imaginary parts are shown in the
figure. The approximate loci, along which the poles of PEC and coated aircraft with different coating
thicknesses lie, are indicated with dashed lines. The cosine of the angle between the negative real axis
and the loci determines the damping ratio. The damping ratio indicates the rapidity in the decay of
oscillations. The lines are marked with the same colours as that used to indicate the poles of a particular
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Figure 5. RCS of coated 1.5λ aircraft (tc = 10 mm).

Figure 6. RCS of coated 1.5λ aircraft (tc = 14.02 mm).

Figure 7. Dominant poles of 1.5λ aircraft — uncoated and coated (different thickness).

aircraft. The damping ratio along the imaginary axis is minimum (cos(90◦)) and maximum along the
negative real axis (cos(0◦)). It is observed in Fig. 7 that, as the coating thickness is increased, the poles
of the aircraft are relocated towards the loci of higher damping ratios. The EM wave is damped or
absorbed effectively when the coating thickness is of quarter wavelength.
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3.1.d. Discrimination Results

The PEC 1.5λ aircraft (uncoated) model is chosen to be the database target whose dominant poles are
used to build the distinction polynomial. The PEC target is discriminated against the 1.5λ aircraft
model applied with RAM coating. The RCSs of these coated targets are used to quantify the amount
of mismatch at aspect angles [θ = 90◦; φ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦] using the definition of
Risk. The Risk in dB is determined, and the results are presented in Table 2.

Table 2. Discrimination of coated and uncoated 1.5λ aircraft.

Aspect angle
in degrees

Risk in dB
tc = 1mm tc = 5mm tc = 10 mm tc = 14.02 mm

0
30
60
90
120
150
180

8.0274
−0.6274
−3.7459
13.4644
−5.7942
−25.1413
19.5524

12.9471
9.9493
−1.2054
20.3333
−10.7076
−3.4500
29.2579

13.1190
16.6865
3.7892
20.3435
−3.0142
2.6602
29.6724

13.0899
18.6280
4.2853
20.3413
−1.5777
2.5894
29.6231

More than 2 dB of ‘Risk’ value (in magnitude) obtained at most of the aspects for a target is a
clear indication of the dissimilarity. At 30◦ aspect, in the case of discriminating 1 mm coated aircraft,
the value of Risk is below 1 dB. This may be viewed as the aspect at which the RCSs of the coated
and uncoated aircraft contain closely resembling poles causing maximum pole cancellation in the risk
factor and eventually leading to a lower Risk value. In such cases where the risk value is less than 2 dB
in magnitude, it may be stated that the final discrimination judgement should be arrived only after
assessing the Risk value at more than one aspect. The discrimination results obtained demonstrate the
ability of the discrimination technique to distinguish targets that differ in material composition.

3.2.a. Discrimination of a 7λ PEC Aircraft with and without RAM Coating

As the second example for discrimination of targets with composition variation, a model PEC aircraft
of 7λ fuselage, 12λ wing span, and height of 2λ, shown in Fig. 8, is used as the database aircraft. It
is used to represent a scaled model of typical fighter aircraft Me163B-1. Though the model is not an
exact replica of the real aircraft, it is used for the analysis purpose.

Figure 8. 7λ PEC aircraft model.
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3.2.b. Computation of RCS of the 7λ Aircraft Model

The RCS of the PEC aircraft was computed using MoM at seven different aspect angles ranging from
θ = 90◦; φ = [0, 30, 60, 90, 120, 150, 180] degrees. The response at each aspect was computed
using the MoM solution for a frequency range of 1MHz to 500 MHz. This range covers the half-
lambda rule to include the minimum and maximum characteristic dimensions of the aircraft for proper
resonance region response. Between 1 MHz and 500 MHz, the RCS is computed at 64 discrete points.
The PEC aircraft was coated uniformly with the same RAM material used in the previous case and
tc = 14.02 mm. The simulations were carried out on a system with 16 Intel Xeon R©processors, 2.30 GHz,
126 GiB memory. The simulations were run on a single processor with 12 cores. The simulation time
and memory requirement for the RCS computations of uncoated and coated aircraft are given in Table 3.

Table 3. Simulation comparison of coated and uncoated 7λ aircraft.

Parameters Uncoated Coated
No. of meshes 22046 22046

No. of unknowns 33069 33069
CPU time in hours 81.406 561.650
Peak memory in GB 8.303 8.343

It may be noted that the computation time required for the coated aircraft is seven times of that
of the uncoated one. The number of unknowns and the memory required remain almost the same in
both the cases.

The RCSs of the uncoated and coated aircraft are shown in Figs. 9 and 10, respectively. A
comparison of the two plots shows the impact of the RAM coating on the RCS of the aircraft. The
magnitude of the RCS has been reduced by almost 30 dB at the broad-side incidence.

Figure 9. RCS of PEC 7λ aircraft (uncoated).

3.2.c. Determination of NRFs of Coated and Uncoated 7λ Aircraft

The RCS plots show a lot of resonant peaks in the computed range of frequency. This indicates that a
large number of poles are representative of the target in the resonant range. The order N of the function
was determined to be around 50 at all aspects for a better convergence of the poles using the VF method,
and the RMSE was 5.57E-7 at 0◦ aspect. From the set of 50 poles, the most dominant NRFs useful for
discrimination were determined based on the power contribution criteria and are presented in Fig. 11.
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The plot clearly shows the variation in the pole values caused by the RAM coating. Similar to the
pole relocation observed in the case of 1.5λ aircraft for change in material composition, the poles of the
coated aircraft have moved far into the LHP indicating higher values of damping ratio.

Figure 10. RCS of 7λ aircraft coated with RAM (tc = 14.02 mm).

Figure 11. Dominant NRFs of uncoated and coated 7λ aircraft.

Table 4. Discrimination of uncoated and coated 7λ aircraft model.

Aspect angle in degrees Risk in dB
0
30
60
90
120
150
180

30.0565
2.6842
15.0455
6.0800

−14.2059
3.3739
3.7763
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3.2.d. Discrimination Results

The distinction polynomial was built using the dominant poles of the uncoated aircraft which is
considered as the database target. The Risk values obtained at various aspects are tabulated in Table 4.
The value of Risk is found to be greater than 2 dB in magnitude at all aspects. This demonstrates the
capability of the algorithm to discriminate effectively the large sized targets with composition variation.

4. CONCLUSIONS

The main focus of this paper was to apply the discrimination technique to the problem of distinguishing
the absorber coated and uncoated aircraft which find application in countering stealth aircraft. For
the examples studied, the Risk value of more than 2 dB is achieved at all aspect angles which clearly
demonstrates the aspect independent discrimination capability of the technique to discriminate targets
with different material compositions. In addition, the pattern in the variation of dominant poles of
coated aircraft with the coating thickness has been analyzed by studying the damping ratio pattern.
The damping ratio is seen to increase with the coating thickness.

The main advantage of the technique used here is that the direct amplitude returns of the target
is sufficient for the discrimination purpose and does not require any processing stage to extract the
features from the target echo. It also provides a one number description for discrimination called as
‘Risk’. Another key advantage of the technique is the aspect independent discrimination capability.
These key features of the discrimination algorithm make it suitable for real time implementation. This
technique may also be employed in some commercial applications such as to determine the degradation
of a coating (paint) on a material due to factors like aging or prolonged use.

Nevertheless, the latest technique in stealth is to employ nanomaterials for stealth purposes [21].
In the event of nanomaterial coated bodies exhibiting prominent pole variations, the technique could
still prove its efficiency that may be further studied.
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“From blackness to invisibility — Carbon nanotubes role in the attenuation of and shielding
from radio waves for stealth technology,” Carbon, Vol. 126, 31–52, 2018, ISSN 0008-6223,
https://doi.org/10.1016/j.carbon.2017.09.078.


