Vol. 88
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2020-10-23
Optimum Design Methodology for Axially Polarized Multi-Ring Radial and Thrust Permanent Magnet Bearings
By
Progress In Electromagnetics Research B, Vol. 88, 197-215, 2020
Abstract
This article deals with the generalized procedure of designing and optimizing multi-ring radial and thrust permanent magnet bearings (PMBs) with an axial air gap for maximum force and stiffness per volume of the magnet. Initially, the procedure of determining optimized design variables in both the configurations is presented using the MATLAB codes written for solving the three dimensional (3D) equations of force and stiffness in PMB having `n' number of rings on the stator and rotor. The maximized results of the forces in both radial and thrust multi-ring PMBs are validated with the values obtained using finite element analysis (FEA). Then, the correlation between the optimized parameters and the air gap is obtained, and curve fit equations for the same are proposed in terms of stator outer diameter. Further, curve fit equations establishing the relationship between the maximized bearing features, and the aspect ratio (L/D4) of the bearing are expressed for different values of air gap in both the radial and thrust bearings. Finally, the generalized method of designing and optimizing the multi-ring PMB is demonstrated with a specific application. A designer can use the presented curve fit equations for optimizing design variables and calculating maximized bearing features in multi-ring radial and thrust PMBs easily just by knowing the bearing features for a single ring pair.
Citation
Siddappa Iranna Bekinal, and Mrityunjay Doddamani, "Optimum Design Methodology for Axially Polarized Multi-Ring Radial and Thrust Permanent Magnet Bearings," Progress In Electromagnetics Research B, Vol. 88, 197-215, 2020.
doi:10.2528/PIERB20090502
References

1. Baermann, M., German patent application B, 30042 dated 1954 (German specification No.1071891).

2. Backers, F. T., "A magnetic journal bearing," Philips Tech. Rev., Vol. 22, 232-238, Jan. 6, 1960.

3. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
doi:10.1109/TMAG.1978.1060019

4. Yonnet, J. P., "Permanent magnetic bearings and couplings," IEEE Trans. Magn., Vol. 17, No. 1, 1169-1173, 1981.
doi:10.1109/TMAG.1981.1061166

5. Ohji, T., et al. "Conveyance test by oscillation and rotation to a permanent magnet repulsive-type conveyor," IEEE Trans. Magn., Vol. 40, No. 4, 3057-3059, 2004.
doi:10.1109/TMAG.2004.832263

6. Kriswanto, J., "Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal wind turbine applications," 3rd International Conference on Advanced Materials and Science and Technology (ICAMST 2015), AIP Conference Proceedings, Semaran, 0200341(1-10), 2015.

7. Sotelo, G. G., R. Andrade, and A. C. Ferreira, "Magnetic bearing sets for a Flywheel system," IEEE Trans. on Applied Super Conductivity, Vol. 17, No. 2, 2150-2153, 2007.
doi:10.1109/TASC.2007.899268

8. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 9, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443

9. Le, Y., J. Fang, and J. Sun, "Design of a Halbach array permanent magnet damping system for high speed compressor with large thrust load," IEEE Trans. Magn., Vol. 51, No. 1, 1-9, 2015.

10. Bekinal, S. I., S. Jana, and S. S. Kulkarni, "A hybrid (permanent magnet and foil) bearing set for complete passive levitation of high-speed rotors," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 231, 3679-3689, 2017.
doi:10.1177/0954406216652647

11. Bekinal, S. I. and M. Doddamani, "Friction-free permanent magnet bearings for rotating shafts: A comprehensive review," Progress In Electromagnetics Research C, Vol. 104, 171-186, 2020.

12. Paden, B., N. Groom, and J. Antaki, "Design formulas for permanent-magnet bearings," ASME Trans., Vol. 125, 734-739, 2003.
doi:10.1115/1.1625402

13. Tan, Q., W. Li, and B. Liu, "Investigations on a permanent magnetic hydrodynamic journal bearing," Tribology International, Vol. 35, 443-448, 2002.
doi:10.1016/S0301-679X(02)00026-9

14. Samanta, P. and H. Hirani, "Magnetic bearing configurations: Theoretical and experimental studies," IEEE Trans. Magn., Vol. 44, No. 2, 292-300, 2008.
doi:10.1109/TMAG.2007.912854

15. Lijesh, K. P. and H. Hirani, "Development of analytical equations for design and optimization of axially polarised radial passive magnetic bearing," ASME Journal of Tribology, Vol. 137, 011103(1-9), 2015.
doi:10.1115/1.4029073

16. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Halbach structures for permanent magnets bearings," Progress In Electromagnetics Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401

17. Bekinal, S. I., A. R. Tumkur Ramakrishna, S. Jana, S. S. Kulkarni, A. Sawant, N. Patil, and S. Dhond, "Permanent magnet thrust bearing: Theoretical and experimental results," Progress In Electromagnetics Research B, Vol. 56, 269-287, 2013.
doi:10.2528/PIERB13101602

18. Tian, L.-L., X.-P. Ai, and Y.-Q. Tian, "Analytical model of magnetic force for axial stack permanent-magnet bearings," IEEE Trans. Magn., Vol. 48, No. 10, 2592-2599, 2012.
doi:10.1109/TMAG.2012.2197635

19. Bekinal, S. I. and S. Jana, "Generalized three-dimensional mathematical models for force and stiffness in axially, radially, and perpendicularly magnetized passive magnetic bearings with ‘n’ number of ring pairs," ASME Journal of Tribology, Vol. 138, No. 3, 031105(1-9), 2016.
doi:10.1115/1.4032668

20. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE Trans. Magn., Vol. 42, No. 8, 2038-2042, 2006.
doi:10.1109/TMAG.2005.861160

21. Lijesh, K. P., M. R. Doddamani, and S. I. Bekinal, "A pragmatic optimization of axial stack-radial passive magnetic bearings," ASME Journal of Tribology, Vol. 140, 021901(1–9), 2018.

22. Lijesh, K. P., M. R. Doddamani, S. I. Bekinal, and S. M. Muzakkir, "Multi-objective optimization of stacked radial passive magnetic bearing," Proc. IMechE Part J: J. Engineering Tribology, Vol. 232, 1140-1159, 2018.
doi:10.1177/1350650117733374

23. Van Beneden, M., V. Kluyskens, and B. Dehez, "Optimal sizing and comparison of permanent magnet thrust bearings,", Vol. 53, No. 2, 1-10, 2017.

24. Bekinal, S. I., M. R. Doddamani, and S. Jana, "Optimization of axially magnetised stack structured permanent magnet thrust bearing using three dimensional mathematical model," ASME Journal of Tribology, Vol. 139, No. 3, 031101(1-9), 2017.
doi:10.1115/1.4034533

25. Bekinal, S. I., M. R. Doddamani, B. V. Mohan, and S. Jana, "Generalized optimization procedure for rotational magnetized direction permanent magnet thrust bearing configuration," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 233, 2563-2573, 2019.
doi:10.1177/0954406218786976

26. Sodano, H. A. and D. J. Inman, "Modeling of a new active eddy current vibration control system," ASME Journal of Dynamic Systems, Measurement and Control, Vol. 130, 021009-1-11, 2008.

27. Detoni, J. G., Q. Cui, N. Amati, and A. Tonoli, "Modelling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications," Journal of Sound and Vibration, Vol. 373, 52-65, 2016.
doi:10.1016/j.jsv.2016.03.013

28. Passenbrunner, J., G. Jungmayr, and W. Amrhein, "Design and analysis of a 1d actively stabilized system with viscoelastic damping support," Actuators, Vol. 8, No. 33, 2-18, 2019.

29. Yoo, S. Y., W. Kim, S. Kim, W. Lee, Y. Bae, and M. Noh, "Optimal design of non-contact thrust bearing using permanent magnet rings," Int. Journal of Precision Engg. and Manufacturing, Vol. 12, No. 6, 1009-1014, 2011.
doi:10.1007/s12541-011-0134-4

30. Safaeian, R. and H. Heydari, "Comprehensive comparison of different structures of passive permanent magnet bearings," IET Electric Power Appl., Vol. 12, 179-187, 2017.

31. Bekinal, S. I. and M. Doddamani, "Improvement in the design calculations of multi ring permanent magnet thrust bearing," Progress In Electromagnetics Research M, Vol. 94, 83-93, 2020.
doi:10.2528/PIERM20052403