Vol. 95
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-01-19
Conductivity Estimation by Characterization of the Anomalous Dispersion Region
By
Progress In Electromagnetics Research Letters, Vol. 95, 155-162, 2021
Abstract
Anomalous dispersion region is a resonance signature in the frequency response of resonators known as Lorentz resonators. It is identified by two consecutive slope reversals of the transmission phase response and a dip in the amplitude response. In this letter, we propose to exploit this unique resonant phase signature in characterization of the conductivity of solid and liquid material samples. The microwave resonator sensor consists of an open microstrip stub whose conductivity is designed to vary in response to an intruding sample. The transmission response of the resonator containing the material sample is measured using a vector network analyzer. The change of conductivity affects the Q-factor which can be detected by either the slope changes of the anomalous dispersive phase or the 3dB bandwidth of the amplitude spectrum. The hypothesis is practically demonstrated by detecting resistive changes of a saline solution whose conductivity depends on the amounts of additive salt.
Citation
Omar F. Siddiqui, "Conductivity Estimation by Characterization of the Anomalous Dispersion Region," Progress In Electromagnetics Research Letters, Vol. 95, 155-162, 2021.
doi:10.2528/PIERL20090406
References

1. Dogariu, A., A. Kuzmich, and L. Wang, "Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity," Physical Review A, Vol. 63, No. 5, 053806, 2001.
doi:10.1103/PhysRevA.63.053806

2. Brillouin, L., Wave Propagation and Group Velocity, Vol. 8, Academic Press, 2013.

3. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, 2007.

4. Bolda, E. L., J. C. Garrison, and R. Y. Chiao, "Optical pulse propagation at negative group velocities due to a nearby gain line," Physical Review A, Vol. 49, No. 4, 2938, 1994.
doi:10.1103/PhysRevA.49.2938

5. Wang, L., A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature, Vol. 406, No. 6793, 277-279, 2000.
doi:10.1038/35018520

6. Siddiqui, O. F., S. J. Erickson, G. V. Eleftheriades, and M. Mojahedi, "Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 5, 1449-1454, 2004.
doi:10.1109/TMTT.2004.827018

7. Siddiqui, O. F., M. Mojahedi, and G. V. Eleftheriades, "Periodically loaded transmission line with effective negative refractive index and negative group velocity," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2619-2625, 2003.
doi:10.1109/TAP.2003.817556

8. Siddiqui, O. F., R. Ramzan, M. Amin, M. Omar, and N. Bastaki, "Lorentz reflect-phase detector for moisture and dielectric sensing," IEEE Sensors Journal, Vol. 18, No. 22, 9236-9242, 2018.
doi:10.1109/JSEN.2018.2869401

9. Solli, D., R. Chiao, and J. Hickmann, "Superluminal effects and negative group delays in electronics, and their applications," Physical Review E, Vol. 66, No. 5, 056601, 2002.
doi:10.1103/PhysRevE.66.056601

10. Siddiqui, O., R. Ramzan, M. Omar, and M. Amin, "Phase sensinga novel material characterization method," 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), 1-4, IEEE, 2017.

11. Ramzan, R., O. F. Siddiqui, M. W. Arshad, and O. M. Ramahi, "A complex permittivity extraction method based on anomalous dispersion," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3787-3796, Nov. 2016.
doi:10.1109/TMTT.2016.2605664

12. Siddiqui, O., R. Ramzan, M. Amin, and O. M. Ramahi, "A non-invasive phase sensor for permittivity and moisture estimation based on anomalous dispersion," Scientific Reports, Vol. 6, Jun. 2016.

13. Pozar, D., Microwave Engineering, John Wiley & Sons, 2005.

14. Kharangate, L. S., N. Guinde, and A. Tamba, "A novel approach for metal detection in food using curve fitting technique," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1867-1871, IEEE, 2017.

15. Haimovich, H., D. Marelli, and D. Sarlinga, "A signal processing method for metal detection sensitivity improvement in balance-coil metal detectors for food products," 2020 IEEE International Conference on Industrial Technology (ICIT), 645-651, IEEE, 2020.
doi:10.1109/ICIT45562.2020.9067312

16. Nor, F. M., A. R. Tamuri, and A. K. Ismail, "Fake gold: Gold purity measurement using non destructive method," International Journal of Engineering & Technology, Vol. 8, No. 1.1, 165-172, 2019.

17. Robinson, S. and R. Nakkeeran, "Photonic crystal based sensor for sensing the salinity of seawater," IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM-2012), 495-499, IEEE, 2012.

18. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.

19. Chen, L.-F., C. Ong, C. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466

20. Siddiqui, O., "The forward transmission matrix method for S-parameter analysis of microwave circuits and their metamaterial counterparts," Progress In Electromagnetics Research B, Vol. 66, 123-141, 2016.
doi:10.2528/PIERB16012101

21. Systems, D., Cst microwave studio, , https://www.3ds.com/products-services/simulia/products/cststudio-suite/.

22. Kobayashi, Y. and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 2466-2488, Apr. 1985.

23. Dube, D., M. T. Lanagan, J. H. Kim, and S. J. Jang, "Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique," Journal of Applied Physics, Vol. 63, 2466-2488, Apr. 1988.
doi:10.1063/1.341024

24. Santra, M. and K. U. Limaye, "Estimation of complex permittivity of arbitrary shape and size dielectric samples using cavity measurement technique at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 718-722, Feb. 2005.
doi:10.1109/TMTT.2004.840570

25. Sheen, J., "Study of microwave dielectric properties measurements by various resonance techniques," Measurement, Vol. 37, 123-130, Dec. 2005.
doi:10.1016/j.measurement.2004.11.006

26. Kronig, R. D. L., "On the theory of the dispersion of x-rays," J. Opt. Soc. Am., Vol. 12, 547-557, 1926.
doi:10.1364/JOSA.12.000547