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Conductivity Estimation by Characterization of the Anomalous
Dispersion Region

Omar Siddiqui*

Abstract—Anomalous dispersion region is a resonance signature in the frequency response of resonators
known as Lorentz resonators. It is identified by two consecutive slope reversals of the transmission
phase response and a dip in the amplitude response. In this letter, we propose to exploit this unique
resonant phase signature in characterization of the conductivity of solid and liquid material samples.
The microwave resonator sensor consists of an open microstrip stub whose conductivity is designed to
vary in response to an intruding sample. The transmission response of the resonator containing the
material sample is measured using a vector network analyzer. The change of conductivity affects the
Q-factor which can be detected by either the slope changes of the anomalous dispersive phase or the
3 dB bandwidth of the amplitude spectrum. The hypothesis is practically demonstrated by detecting
resistive changes of a saline solution whose conductivity depends on the amounts of additive salt.

1. INTRODUCTION

Anomalous dispersion is an exciting physical phenomenon which was first discovered by Lord Raleigh
while studying the resonances produced in mechanical oscillators [1]. Later, Sommerfield and Brillouin
[2] analytically showed the existence of abnormal wave velocities in this highly dispersive and absorptive
region. The experimental demonstration of negative group velocity helped clear misconceptions that
historically surrounded the phenomenon [3–7]. The anomalous dispersion occurs naturally in materials
in the THz range when constituent atoms resonate with the incoming light waves. The theoretical
model which predicts this electromagnetic behavior was devised by Drude and Lorentz and hence is
known as the Drude-Lorentz model [3, 8]. In the microwave spectrum, passive and active resonant
circuits have been applied to mimic this atomic resonant behavior [6, 7, 9]. A simple RLC resonator
configuration whose frequency response bears the anomalous dispersion region is given in Fig. 1 [6, 7, 10].
The associated transmission coefficient is marked by high amplitude absorption and rapid phase changes
in the resonant region.

More recently, microwave sensors based on anomalous dispersion have demonstrated promising
potential in the area of material detection [8, 10–12]. Compared to the traditional microwave sensing
which relies on the detection of 3 dB amplitude bandwidth, the anomalous dispersive sensors work on
the principle of phase-slope detection, which reduces the computational complexity, and work better
in noisy environments. In these foundational works, the series RLC resonator has been chosen for
dielectric characterization because of its simpler implementation as an open circuit stub [13]. Look
again at Fig. 1 to observe the difference between the previously implemented dielectric sensing and the
proposed conductivity characterization of this letter. The dielectric detection is based on introducing
the sample in the cavity that surrounds the series RLC branch so that its capacitance ‘C’ is affected.
The resulting shift of the resonant frequency and variation of the Q-factor correspond to the intruding
dielectric parameters [8, 10–12]. Here, we propose to design a detection system in which the external
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Figure 1. Series RLC and its transmission response. The anomalous dispersion region is identified by
the dip in amplitude and reversals of the phase slopes. Effect of increase of resistance in the plots is
shown by dotted lines.

conductive sample modifies the resistance ‘R’ of the series RLC resonator. As shown in Fig. 1, when
the conductivity of a conductive material sample decreases, there is an increase in the series resistance
leading to a wider amplitude response or an anomalous phase response with a smaller slope (see the
dotted curve).

Practically, we design a conductivity-sensitive resonator by opening a small gap in the open-circuit
stub in which saline solution of variable conductivity is introduced. The effects of conductivity on
the resonator’s Q-factor are characterized analytically and in an FR4-based microstrip structure in the
frequency range of 1–1.5 GHz. We anticipate that the proposed conductivity sensor can be potentially
used in various detection applications such as the detection of metallic particles in food [14, 15], sensing
impurities in precious materials [16], and sea-water salinity detection [17].

2. ANALYTICAL FORMULATION

The series RLC resonator of Fig. 1 can be implemented in microstrip technology with an open-circuit
quarterwave stub [13]. The quarterwave stub is well known for its narrowband characteristics and
hence is widely implemented as a notch filter in antenna engineering [18]. From the sensing viewpoint,
the notch type response translates to higher detection sensitivities [19]. Consider the microstrip
implementation of the open stub structure and its circuit model in Fig. 2(a). The complex node voltages
V̄i, V̄ ,́ and V̄o are calculated by employing the Forward Transmission Matrix (FTM) method [20]. After
applying the Kirchhoff’s current equations on the three nodes, following simultaneous equations are
obtained in the matrix form: ⎛

⎝ V̄i

V̄´
V̄o

⎞
⎠ =

⎛
⎝ P̄ Q̄ 0

Q̄ R̄ Q̄
0 Q̄ P̄

⎞
⎠

−1 ⎛
⎝

Vs
Zo

0
0

⎞
⎠ (1)

where Vs is the source voltage, and Zo is the characteristic impedance of the microwave system. P , Q,
and R are complex frequency-dependent variables, defined as:

P̄ = −jYom cot
βd

2
+

1
Zo

(2)

Q̄ = jYom csc
βd

2
(3)

R̄ = −2jYom cot
βd

2
+ Yos tanh γ̄sLs (4)
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Figure 2. (a) Comparison of Amplitude and Phase Spectra of the Open-Stub resonator calculated
from the circuit model and full-wave simulations. The parameters of the microstrip structure are given
in the table. (b) The effect of change in conductivity on the bandwidth of the amplitude response and
on the phase slope of the anomalous dispersion region.

where β, Zom Yom, and d are the phase constant, characteristic impedance, admittance, and length of
the interconnecting transmission line, while γ̄s and Yos are the complex propagation constant and
characteristic admittance of the open stub. The complex propagation constant is the sum of the
attenuation and phase constants, i.e., αs + jβs. Knowing the physical microstrip parameters outlined
in Fig. 2(a), the characteristic impedances and phase constants can be determined from the well-known
transmission line rules [13].

The magnitude and phase of the transmission coefficient are calculated from Eq. (1) and are shown
in Fig. 2(a). The circuit model is also verified with the full-wave simulations using the electromagnetic
simulator CST Microwave Studio [21]. As depicted in Fig. 2(a), the circuit and full-wave models
demonstrate a close resemblance. The anomalous dispersion can be observed at fo = 0.99 GHz at
which the electrical length of the stub is approximately a quarter of the wavelength. Analytically, this
frequency is given by:

fo
∼= c

4
√

εesLs
, (5)

where εes is the effective relative permittivity. The output node voltage Vo can be further simplified by
solving Eq. (1) with the assumption that the lengths of the transmission line segments connected to the
open stub are small enough so that the phase βd is negligible. The output voltage can then be written
as:

V̄o ≈ 1
2 + (1 + jβd)(ZoYos tanh γ̄sLs)

(6)

Further approximation of the output voltage can be obtained in the spectral vicinity of the resonance
by assuming Δf = f − fo in the above equation (i.e., when Δf → 0),

V̄o ≈
αsLs + j

πΔf

2fo

(2αsLs + ZoYos) + j

(
βdZoYos +

πΔf

fo

) (7)
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The approximate magnitude and phase spectra from the above two relations are also plotted along
with the quantities obtained from the exact relation of Eq. (1) and the full-wave CST simulations in
Fig. 2(a). The overlapping spectra close to the resonance in the anomalous dispersion region show the
validity of the approximations assumed in Eqs. (6) and (7). From the point of view of conductivity
sensing, the phase-slope of the anomalous dispersion region is particularly important as it corresponds to
the losses in the structure [8, 10–12]. To quantify this underlying dependence, the phase angle obtained
from the voltage Equation (7) is differentiated to find the slope. The resulting phase-slope is given by:

d

df
(∠V̄o) ≈ ZoYos

αsLs(2αsLs + ZoYos)

(
2παsLs

√
μoεesd − π

2fo

)
(8)

It can be observed from Eq. (8) that an increase in the stub’s loss corresponds to the decrease
of the phase-slope. To demonstrate this correspondence, conductivity (σ) of the open circuit stub in
the resonant circuit of Fig. 2(a) is varied, and the resulting magnitude and phase plots are depicted
in Fig. 2(b). Looking at the magnitude plots, it can be seen that the decrease in conductivity leads
to the broadening of the resonant curve or a reduction in the Q-factor of the resonator. Alternatively,
the Q-factor reduction is accompanied by the obvious decrease in the phase slope, thus corroborating
Eq. (8). Hence a detector based on anomalous dispersion provides an additional degree of freedom
to estimate the structure’s losses from the phase-slope, which are conventionally characterized by the
bandwidth and Q-factor determination [19, 22–25]. In fact, this intimate relation between magnitude
and phase is dictated by the well-known Kramers-Kronig relations and has been extensively discussed
in the literature [2, 7, 26]. The phase detection has its own advantages such as noise immunity and
computational simplicity which follows from the fact that the slope of the phase can be determined
by knowing only two points on the phase curve. On the other hand, the amplitude method requires a
complete analysis of the 3 dB bandwidth [8, 10–12].

3. DETECTION PRINCIPLE

The detection principle is based on Eq. (8) which relates the losses in the resonator to the phase-slope of
the anomalous dispersion region. The attenuation constant in Eq. (8) can be calculated by the following
microstrip rule:

αs =
Ys

Ws

√
πfo

σ
(9)

A detection scheme which is sensitive to an external conductive sample can be obtained by
introducing a small gap of 2 mm in the open stub, as depicted in Fig. 3(a). Consider a sample of
volume 2 × 1 × 0.1 mm3 having a dielectric constant 78 and a variable conductivity numerically placed
in the gap. The magnitude and phase spectra from the CST full-wave solver are depicted in Figs. 3(b)
and (c). Without any sample, there is a gap between the 3 cm and 1.2 cm stubs, and hence the structure
resonates when the 3 mm stub becomes electrically equal to a quarter wavelength. From Eq. (5) and also
indicated in Fig. 3 plots, this condition is satisfied around 1.42 GHz. The presence of a pure dielectric
sample (σ = 0) with a large permittivity at the edge of the 3 cm stub effectively increases its electrical
length, leading to a red-shift of the resonance to about 1.37 GHz. A slight increase in the conductivity
(σ = 5) increases the resistive losses in the sample which leads to the broadening of the resonance
dip and decrease of the phase-slope without any shift in the resonance, as depicted in Fig. 3. When
conductivity is further increased, the sample starts acting like a resistor connecting the two open stubs.
This phenomenon can be explained by magnetic field surface distributions given in Fig. 4. No current
flow is observed in the shorter 1.2 cm microstrip segment for a non-conducting dielectric sample. For
σ = 50, some current starts to reach the smaller segment, resulting in the increase of the effective stub
length leading to a further red-shift of the resonance to 1.17 GHz and broadening of the resonance dip
due to higher losses (see Fig. 3). For higher conductivity, the sample offers minimal resistance, and hence
larger currents start flowing along the shorter segment. The resonant frequency in this case reaches
its minimum value of 0.99 GHz. As observed in Figs. 3(b) and (c), the higher and lower conductivity
samples in the conducting region are distinguished by their the Q-factor of the amplitude response or
the slope of the phase response.



Progress In Electromagnetics Research Letters, Vol. 95, 2021 159

(c)  

S 2
1 P

ha
se

 (
R

ad
ia

ns
)

 

No  
sample 

� = 5 

� = 5.8x107 

� = 500 � = 50 

Dielectric  Conductive 

Frequency (GHz) 

(b)  

S 2
1 M

ag
ni

tu
de

 
� = 5 

� = 50 

� = 5.8x107 

� =  
500 

Dielectric  Conductive 

Frequency (GHz) 

OUT 

�r = 4.2 
 

IN 

g = 2 mm 

Sample (�r=78, �) 

Ws  
3 cm 

� = 0 
No  
sample

� = 0 

1.2 cm 

(a)

Figure 3. (a) Open circuit resonator sensor with a 2mm gap where conductive sample is placed. (b)
Transmission magnitudes for different samples (c) Transmission Phase showing the effect of change in
conductivity.

Figure 4. Magnetic field distributions showing the flow of current as the conductivity of the gap
material is increased. For a high conductive sample in the gap, the current flows throughout the two
microstrip segments

4. EXPERIMENTAL RESULTS

The simulation scenario presented in Fig. 3 can be implemented practically by introducing a conductive
saline solution in the open stub gap. The microstrip open stub structure of Fig. 2 is printed on an FR4
substrate using photolithographic fabrication process. The circuit prototype and the S21 measurement
setup with Anritsu’s MS2026C vector network analyzer (VNA) are depicted in Figs. 5(a) and (b). A
conductive solution is prepared by adding measured amounts of table salt to a 170 ml cup of tap water,
as depicted in Fig. 5(c). The sample conductive solution is placed in the open stub gap by using a
dropper, as shown in Fig. 5(d), and transmission coefficient is measured by the VNA. The measured
amplitude and phase of the transmission coefficient are given in Fig. 6. By comparing Fig. 4 and Fig. 6,
it can be observed that simulated and measured resonant circuits (with no sample) resonate at almost
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Figure 5. (a) The S-parameter measurement set-up to characterize conductivity using Anritsu’s VNA.
(b) The open-circuit stub resonator with a gap to put the conductive sample. (c) Saline solution which
is prepared by dissolving measured amounts of salt in 170 ml water. (d) The saline water droplet on
the conductivity sensor. The metallic coin sample is placed for detection.
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Figure 6. Experimental transmission coefficients obtained from VNA measurement showing. (a) The
change in amplitude response with different samples. (b) The change in phase response.

the same resonant frequencies. The slope of the measured anomalous phase is, however, smaller due
to some of the factors such as connector losses and fabrication imperfections not taken into account
in the full-wave simulations. When a 1ml droplet of tap water is placed in the open stub gap, a
larger red-shift of the resonance is observed than the similar scenario in Fig. 5. The larger shift can
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be attributed to the fact that the tap water contains some ingredients such as chlorine and minerals
that were not accounted for in the CST simulations. As expected, the addition of salt makes the water
conductive, and the sample enters the conductive region, as observed in the previous section. The
0.05 g/l saline sample has enough conductivity to excite the currents in the 1.2 cm microstrip segment,
and the resonant frequency approaches that of the highly conductive metal sample, as shown in Fig. 6.
However, the higher Q-factor (indicated by larger phase-slope and narrower bandwidth) differentiates
the pure metal and saline samples. The experiment performed here shows the relationship between
the sample’s conductivity and the resonator’s Q-factor in a qualitative way. For the determination of
conductivity (qualitative analysis), a calibration process is required which involves extensive testing
with known conductivity samples. This is needed for commercial prototyping of any sensor and will be
a topic of a future publication.

Finally, a discussion regarding the difference between the proposed resonator-based detection and
the existing metallic detectors is in order. Most of the existing conductivity determination methods
are based on harmonically balanced inductive coil and involve very low frequency beat signals. In the
presence of a conductive sample, the harmonic balance is disturbed which is identified by the change in
the tone signal [14, 15]. A very high conductivity sample is needed to produce a strong beat difference
to detect the presence of metal. Signal processing methods in combination with statistical analysis have
been used to identify the small changes in conductivity [15]. The proposed method, on the other hand,
is based on detecting the resonance shift and Q-factor of a highly dispersive Lorentz resonator. Since
the detection is done in a very narrowband spectrum, the method is highly sensitive to small changes
in conductivity, as observed in Fig. 6.

5. CONCLUSION

A sensing method to estimate the conductivity of materials based on the characterization of anomalous
dispersion region is proposed. The microwave sensor consists of an open circuit stub with a small gap
which houses the conductive sample. The variation of the material’s conductivity changes the resistance
of the open stub which leads to an increase or decrease of the sensor’s Q-factor. The Q-factor changes
are calculated from the bandwidth of the amplitude spectrum or the slope of the anomalous dispersion
region. We derive analytical equations of transmission coefficients and show the dependence conductivity
on the parameters of the anomalous dispersion region. A correspondence between the circuit analysis
and full-wave simulations is shown. The sensing method is practically demonstrated by introducing
a saline solution in the detection scheme. When the salinity is increased, the variation of Q-factor is
noted in both full-wave solution and experiment. The characterization of anomalous dispersion region
is particularly interesting because the distinct phase signature provides another degree of freedom to
the traditional amplitude sensing, thereby reducing the ambiguity in the detection. The sensor can be
potentially applied in impure metal detection, water salinity and in food industry.
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