Vol. 94
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-18
A Method for Planar Phased Array Calibration
By
Progress In Electromagnetics Research Letters, Vol. 94, 19-25, 2020
Abstract
A method is proposed to calibrate a planar phased array by reconstructing its aperture distribution, in which the aperture distribution is superposed within the physical range of radiating element. Consequently, the calibration coefficients are solved for the linear relationship between the superposed aperture distribution and elements' excitations. The calibration accuracy that is influenced by resolution of aperture distribution is also discussed in this paper. In practice, the reconstruction procedure of aperture distribution is based on the plane wave spectrum (PWS) theory, utilizing FFT and IFFT techniques. This method turns out to be valid by experiment.
Citation
Yangyi Lu, Lei Zhou, Mantang Cui, Xiaodong Du, and Yongjun Hu, "A Method for Planar Phased Array Calibration," Progress In Electromagnetics Research Letters, Vol. 94, 19-25, 2020.
doi:10.2528/PIERL20090106
References

1. Mano, S. and T. Katagi, "A method for measuring amplitude and phase of each radiating element of a phased array antenna," Electronics and Communications in Japan, Vol. 65, No. 5, 1982.

2. Takahashi, T., H. Miyashita, Y. Konishi, et al. "Theoretical study on measurement accuracy of rotating element electric field vector (REV) method," Electronics and Communications in Japan, Vol. 89, No. 1, 2006.
doi:10.1002/ecj.11492

3. Lee, K. M., R. S. Chu, and S. C. Liu, "A built-in performance-monitoring/fault isolation and correction (PM/FIC) system for active phased-array antennas," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 11, 1530-1540, 1993.
doi:10.1109/8.267356

4. Hampson, G. A. and A. B. Smolders, "A fast and accurate scheme for calibration of active phased-array antennas," IEEE International Symposium on Antennas and Propagation, 1040-1043, Orlando, 1999.

5. Aumann, H. M., A. J. Fenn, and F. G. Willwerth, "Phased array antenna calibration and pattern prediction using mutual coupling measurement," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 7, 844-850, 1989.
doi:10.1109/8.29378

6. Gu, Q., C. Dai, C. Zhang, et al. "Analysis of amplitude-phase error of phased array calibration in mid-field," Asia-Pacific Conference on Antennas and Propagation, 280-283, Harbin, 2014.

7. Bucci, O. M., D. Migliore, G. Panariello, et al. "Accurate diagnosis of conformal arrays from near-field data using the matrix method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 1114-1120, 2005.
doi:10.1109/TAP.2004.842656

8. Long, R. and J. Ou Yang, "Planar phase array calibration based on near-field measurement system," Progress In Electromagnetics Research C, Vol. 71, 25-31, 2017.

9. Hanfling, J. D., G. V. Borgiotti, and L. Kaplan, "The backward transform of the near field for reconstruction of aperture fields," Proc. IEEE Antennas Propagat. Symp., Vol. 2, 764-767, 1979.

10. Lee, J. J., E. M. Ferren, D. Pat Woollen, et al. "Near-field probe used as a diagnostic tool to locate defective elements in an array antenna," IEEE Transactions on Antenna and Propagation, Vol. 36, No. 6, 884-889, 1988.
doi:10.1109/8.1192

11. Yaghjian, A. D., "Approximate formulas for the far field and gain of open-ended rectangular waveguide," IEEE Transactions on Antenna and Propagation, Vol. 32, No. 4, 378-384, 1984.
doi:10.1109/TAP.1984.1143332

12. Gregson, S., J. McCormick, and C. Parini, Principles of Planar Near-field Antenna Measurements, The Institution of Engineering and Technology, 2007.
doi:10.1049/PBEW053E