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A Method for Planar Phased Array Calibration

Yangyi Lu*, Lei Zhou, Mantang Cui, Xiaodong Du, and Yongjun Hu

Abstract—A method is proposed to calibrate a planar phased array by reconstructing its aperture
distribution, in which the aperture distribution is superposed within the physical range of radiating
element. Consequently, the calibration coefficients are solved for the linear relationship between the
superposed aperture distribution and elements’ excitations. The calibration accuracy that is influenced
by resolution of aperture distribution is also discussed in this paper. In practice, the reconstruction
procedure of aperture distribution is based on the plane wave spectrum (PWS) theory, utilizing FFT
and IFFT techniques. This method turns out to be valid by experiment.

1. INTRODUCTION

Phased array calibration ensures good performance of the array. The evaluation of the excitation
of each radiating element is a fundamental part of calibrating phased array. Many phased array
calibration methods have been developed in the past decades, e.g., rotating element electric field vector
(REV) [1, 2], phase toggling method (PTM) [3, 4], mutual coupling method (MCM) [5, 6], and matrix
method (MM) [7, 8], and some of them are based on near field measurement system. Many calibration
methods need to use phase shifters of a phased array, and the effectiveness of the methods is influenced by
the performance of phase shifters greatly. To get rid of the restriction, this paper proposes a calibration
method based on planar near field (PNF) measurement system. The theoretical development of planar
near field antenna measurements is usually based on the plane wave spectrum (PWS) representation
of electromagnetic waves. For most application, the near field data are processed through Fourier
transform to obtain PWS and the far field pattern of the antenna under test (AUT). Besides, near field
data can be treated by “backward” transform to reconstruct the aperture distribution as a calibration
method [9, 10].

The backward transformation method (BTM) is also called microwave holographic metrology. It
recovers the aperture distribution in front of the array with the measured planar near field data by
using the PWS theory. The resolution of reconstructed aperture distribution is equal to the sampling
interval of the measured plane because of the characteristic of Fourier transform. In conventional BTM,
the amplitude and phase are extracted from the reconstructed aperture at element’s position. In this
paper, the Fourier interpolation formula is introduced to increase the resolution of aperture distribution,
then the amplitude and phase of the superposed aperture distribution in front of radiating elements are
regarded as the excitation of the elements. Particularly, this paper will present the experimental results
of the 45 × 1 microstrip patches array on planar near field system.

2. ANALYSIS

The calibration coefficient is derived from the aperture distribution in front of planar phased array,
which can be reconstructed from the near field data through BTM. Firstly, the planar near field data
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Figure 1. Geometry for formulation of aperture reconsctruction.

are processed through 2D Fourier transform to obtain PWS in the wave number (k) space. After
making a probe correction, an inverse transform is taken to rebuild the aperture distribution. The
process of backward transform effectively translates the measurement plane from z = d to z = 0, where
the aperture field is projected as illustrated in Figure 1. Then, a Fourier interpolation formula is used
to increase the resolution of the aperture distribution. Finally, the calibration coefficient is calculated
from superposed electric field, which is the superposition of the interpolated aperture distribution in
the element’s physical range. Figure 1 shows the physical range of (i, j)th radiating element and sketch
of Fourier interpolation, which would increase resolution of aperture distribution from Δx, Δy to Δxr,
Δyr.

As described in [12], the PNF scan plane is spaced approximately three wavelengths from the array.
The probe output at each probe position in the scan is contributed by all the plane wave components
received by the probe, which is characterized by a vector receive pattern S(−k), and the output can be
written as

P0(x, y, z = d) =
∫ +∞

−∞

∫ +∞

−∞

kz

k
A(k) · S(−k)e−jkzde−j(kxx+kyy)dkxdky (1)

where vector A(k) is the plane wave spectrum of AUT, and e−jkzd is a spatial phase factor referred to

measurement plane for a particular component specified by kz =
√

k2
0 − k2

x − k2
y. It is remarked that

for those components with k2
x + k2

y > k2
0 , kz becomes imaginary, and the wave is highly attenuated.

The energy contained in those spectrum components is usually very small. In order to simplify the
Equation (1), denote

I =
1

4π2
ejkzd k

kz

∫ +∞

−∞

∫ +∞

−∞
P0(x, y, z = d)ej(kxx+kyy)dxdy (2)

Hence, Equation (1) can be expressed as the matrix forms
A · S = I (3)

In Cartesian coordinate system, this PWS can be obtained directly from the sampled tangential near
field data using

A(kx, ky, z) =
∫ +∞

−∞

∫ +∞

−∞
E(x, y, z)ej(kxx+kyy)dxdy (4)
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The propagating electric field everywhere in the forward half-space can be obtained from the tangential
PWS as

E(x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
A(kx, ky, z)ej(kxx+kyy)dkxdky (5)

This means that if the PWS of AUT is solved from Eq. (3), the electric field E is ascertained by
Eq. (5). According to Maxwell’s equations, the wave number vector (k) and PWS (A) are orthogonal,
which means ∇ · A = 0 or k · A = kxAx + kyAy + kzAz = 0. Hence, only two components of AUT’s
PWS may be specified independently, with the third being fixed since Az = −(kxAx + kyAy)/kz. As
required by Equation (3), two different probes are necessary to obtain the AUT’s PWS. In practice, two
scan sets were measured in orthogonal polarizations to allow full characterization of the polarization
performance of the array through rotating probe 90 deg clockwise. The AUT coordinate system and
the probe coordinate system in the two scan sets were connected by

x̂′ = x̂, ŷ′ = −ŷ, ẑ′ = −ẑ

x̂′′ = ŷ, ŷ′′ = x̂, ẑ′′ = −ẑ
(6)

Hence, Equation (3) can be written in a scalar form(
Sx′ +

kx

kz
Sz′

)
Ax +

(
−Sy′ +

ky

kz
Sz′

)
Ay = Ix(

Sy′′ +
kx

kz
Sz′′

)
Ax +

(
Sx′′ +

ky

kz
Sz′′

)
Ay = Iy

(7)

The PWS of probe S can be obtained directly from its far field pattern f(θ, φ) = cos θ · S. After taking
S of the two measurements sets into Eq. (7), the AUT’s unknown tangential spectrum Ax, Ay will be
easily solved. This step is also called probe compensation. Finally, an inverse transform in Eq. (5) is
performed to recover the aperture distribution E(x, y, z = 0).

It should be pointed out that the effect of the probe has been considered in Equation (7). As
mentioned above, when horizontal polarization measurement is taken. The PWS of probe can be
derived from its far field pattern [11]

Sx = fE(θ) cos2(φ) + fH(θ) sin2(φ)/ cos(θ)
Sy = fE(θ) sin(φ) cos(φ) − fH(θ) sin(φ) cos(φ)/ cos(θ)
Sz = −fE(θ) cos(φ) sin(θ) cos(θ)

(8)

where (r, θ, φ) is the probe’s spherical coordinate system.
The array calibration ensures all radiating elements of the array working at equal amplitude

and phase condition. In other words, the excitation of all elements should be adjusted to the same
amplitude and phase by using coefficient. For conventional BTM, the amplitude and phase coefficients
are calculated from aperture distribution at one point (typically, the feed position or the center of
element) relating to each element, and it will cause great error. The method proposed in this paper
assumes that aperture distribution in front of radiating element are dependent on spatial position (x, y)
and proportionate to its excitation. It is reasonable understanding from [8]. So the superposed aperture
electric field can be regarded as the excitation of radiating element

Es
i,j =

∫ xi,j
1

xi,j
0

∫ yi,j
1

yi,j
0

E(x, y)dxdy ∝
M0∑
p=1

N0∑
q=1

αp,qUp,q (9)

where U(p, q) is the (p, q)th element’s excitation of array including amplitude (or voltage) and phase.
The spatial position (x0 ∼ x1, y0 ∼ y1) is the (i, j)th element’s physical range as illustrated in Figure 1.
The phased array contains M0 × N0 (i ∈ [1,M0], j ∈ [1, N0]) elements. The mutual coupling coefficient
is αp,q = 0 (p �= i, q �= j) and αp,q = 1 (p = i, q = j) due to the assumption that the current distribution
at each element is not impacted by mutual coupling. Es

i,j is the superposition of the reconstructed
aperture electric fields E(x, y) in the (i, j)th element’s physical range.

Actually, the near field measurements are performed at discrete points and 2D Fourier transform,
being forward or backward, which is carried out with fast Fourier transform (FFT) techniques. The
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sampling intervals should satisfy Nyquist sampling theorem, which is Δx ≤ λ/2, Δy ≤ λ/2. The
measurement plane is divided into M × N grid points. The process of FFT or IFFT will generate the
same number of data points (M × N) in k space and aperture plane. So the resolution of aperture
distribution is equal to the intervals of near field. There is an efficient algorithm to increase the aperture
field resolution, which is Fourier interpolation algorithm

E(x, y) =
N∑

n=1

M∑
m=1

E(m,n)
sin(m − M/2 − 1 − x/Δx)
(m − M/2 − 1 − x/Δx)π

sin(n − N/2 − 1 − y/Δy)
(n − N/2 − 1 − y/Δy)π

(10)

where E(m,n) is the reconstructed aperture distribution on (m,n)th point of scan grid (m ∈ [1,M ], n ∈
[1, N ]), and E(x, y) is the interpolated aperture distribution at spatial position (x, y).

In theory, high resolution of the reconstructed aperture distribution can be achieved by formula (10),
but the higher resolution results in more consumption of computing resource and time. To derive the
error between excitation and superposed electric field of radiating elements, the rms errors of the
amplitude and phase are defined

εA = std
(

20 log10

∣∣∣∣ Es
i,j

Es
max

∣∣∣∣ − 20 log10

∣∣∣∣ Ee
i,j

Ee
max

∣∣∣∣
)

(11)

εP = std
(
angle(Es

i,j) − angle(Ee
i,j)

)
(12)

where superscript s denotes the superposed electric field of reconstructed aperture distribution, and
superscript e denotes the excitation of radiating element. Subscript (i, j) denotes the (i, j)th element
of array. Function std denotes the standard deviation operation.

3. EXPERIMENT RESULT

The above formulation has been applied to the calibrated measurements of an S-band test phased array.
A phased array consisting of 45 × 1 microstrip patches was considered to test in PNF measurement
system, whose element was offset fed with 31.18mm×46.75 mm size. The microstrip patches lie on XY
plane, and the distance between adjacent elements is 50 mm. The array structure is shown in Figure 2,
and the array transmitted field propagates to positive Z axis. Specially, the polarization of the array
in measurement configuration was horizontal (X axis), and the Iy in Equation (7) is zero. Therefore,
only one configured measurement is needed, and there is no necessity to rotate probe for getting more
near field data.

x

31.18

50

x

yz

45 × 1

......

Figure 2. The structure of microstrip patch array.

The beam forming should be implemented in the array because only element-level PNF data are
available, when the array is characterized in receiving mode. Consequently, the measurements described
here relate only to data collected with the array in transmitting mode. However, this technique is not
limited to the characterization of the transmitting mode for the array, but additional hardware or
software would be required in receiving mode using a PNF system.

Planar near field measurements were taken at 3GHz, at a probe distance of z = 500 mm over a
grid of 145 × 61 points. The sampling intervals were Δx = 0.5λ and Δy = 0.5λ. After processing
the near field data with Eqs. (2), (7), and (5), the projected aperture distribution at z = 0 was
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(a) (b)

Figure 3. The comparison between excitation and reconstructed aperture distribution. (a) Amplitude.
(b) Phase.

Figure 4. The errors of amplitude and phase influenced by interpolating space.

obtained. As mentioned in analysis section, the spatial resolution of this aperture distribution is same
with Δx and Δy before interpolating. There was much error compared to excitation (solid line in
Figure 3) by extracting aperture amplitude and phase at one point position, which is denoted as
Reconstruction Point, as the dash line presented in Figure 3. Next, using interpolation algorithm in
Eq. (8) to obtain “denser” aperture distribution, the core of the method superposes the reconstructed
aperture electric field in front of each radiating element’s physical range. The superposed electric
field is denoted by Renconstruction Superposed, as the dot line shown in Figure 3. Apparently, the
Reconstruction Superposed curve is much closer to the excitation curve. It should be noted that the
interpolation interval here is Δxr = Δyr = λ/20. The resolution of aperture distribution is increased
from λ/2 to λ/20.

The superposed electric field in front of radiating element is regarded as the excitation of the
element, which is influenced by the resolution. So the calibration accuracy is affected by the resolution
directly. In the discretization of superposition integral in Eq. (9), higher resolution or smaller discrete
spacing results in more accurate discrete summation. The errors of amplitude and phase under different
interpolating space intervals are shown in Figure 4. When the interpolating space is greater than
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(a) (b)

Figure 5. The calibration result with point and superposed reconstructed aperture distribution. (a)
Amplitude. (b) Phase.

λ/15, the error increases rapidly. The spacing λ/20 is a good compromise between accuracy and the
consumption of time and computational resource.

The result of calibration through Reconstruction Point and Reconstruction Superposed are shown
in Figure 5. It is obvious that the calibration coefficient calculated from Reconstruction Superposed
ensures all elements working at equal amplitude and phase effectively.

4. CONCLUSION

This paper proposes a modified calibration method for planar phased array with a PNF measurement
system, which is based on BTM. Compared with the traditional BTM, the superposed aperture electric
field in front of radiating elements has higher accuracy, when the resolution of reconstructed aperture
distribution is less than λ/20. It is confirmed to be valid by experimental results.
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