1. Lu, L., J. D. Joannopoulos, and M. Soljacic, "Topological photonics," Nature Photonics, Vol. 8, No. 11, 821-829, 2014.
doi:10.1038/nphoton.2014.248
2. Khanikaev, A. B. and G. Shvets, "Two-dimensional topological photonics," Nature Photonics, Vol. 11, No. 12, 763-773, 2017.
doi:10.1038/s41566-017-0048-5
3. Ozawa, T., H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, "Topological photonics," Reviews of Modern Physics, Vol. 91, No. 1, 015006, 2019.
doi:10.1103/RevModPhys.91.015006
4. Leykam, D. and L. Yuan, "Topological phases in ring resonators: Recent progress and future prospects," Nanophotonics, Vol. 9, No. 15, 4473, 2020.
doi:10.1515/nanoph-2020-0415
5. Kraus, Y. E., Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, "Topological states and adiabatic pumping in quasicrystals," Physical Review Letters, Vol. 109, No. 10, 106402, 2012.
doi:10.1103/PhysRevLett.109.106402
6. Rechtsman, M. C., J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, "Photonic Floquet topological insulators," Nature, Vol. 496, No. 7444, 196-200, 2013.
doi:10.1038/nature12066
7. Weimann, S., M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, and A. Szameit, "Topologically protected bound states in photonic parity-time-symmetric crystals," Nature Materials, Vol. 16, No. 4, 433-438, 2017.
doi:10.1038/nmat4811
8. Noh, J., S. Huang, D. Leykam, Y. D. Chong, K. P. Chen, and M. C. Rechtsman, "Experimental observation of opticalWeyl points and Fermi arc-like surface states," Nature Physics, Vol. 13, No. 6, 611-617, 2017.
doi:10.1038/nphys4072
9. Stutzer, S., Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, and A. Szameit, "Photonic topological Anderson insulators," Nature, Vol. 560, No. 7719, 461-465, 2018.
doi:10.1038/s41586-018-0418-2
10. Noh, J., S. Huang, K. P. Chen, and M. C. Rechtsman, "Observation of photonic topological valley hall edge states," Physical Review Letters, Vol. 120, No. 6, 063902, 2018.
doi:10.1103/PhysRevLett.120.063902
11. Hafezi, M., S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, "Imaging topological edge states in silicon photonics," Nature Photonics, Vol. 7, No. 12, 1001-1005, 2013.
doi:10.1038/nphoton.2013.274
12. Bandres, M. A., S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, "Topological insulator laser: Experiments," Science, Vol. 359, No. 6381, eaar4005, 2018.
doi:10.1126/science.aar4005
13. Leykam, D., S. Mittal, M. Hafezi, and Y. D. Chong, "Recon¯gurable topological phases in next-nearest-neighbor coupled resonator lattices," Physical Review Letters, Vol. 121, No. 2, 023901, 2018.
doi:10.1103/PhysRevLett.121.023901
14. Mittal, S., V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, and M. Hafezi, "Photonic quadrupole topological phases," Nature Photonics, Vol. 13, No. 10, 692-696, 2019.
doi:10.1038/s41566-019-0452-0
15. Mittal, S., V. V. Orre, D. Leykam, Y. D. Chong, and M. Hafezi, "Photonic anomalous quantum Hall effect," Physical Review Letters, Vol. 123, No. 4, 043201, 2019.
doi:10.1103/PhysRevLett.123.043201
16. Wang, Z., Y. Chong, J. D. Joannopoulos, and M. Soljacic, "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Vol. 461, No. 7265, 772-775, 2009.
doi:10.1038/nature08293
17. Lu, L., Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljacic, "Experimental observation of Weyl points," Science, Vol. 349, No. 6248, 622, 2015.
doi:10.1126/science.aaa9273
18. Gao, F., H. Xue, Z. Yang, K. Lai, Y. Yu, X. Lin, Y. Chong, G. Shvets, and B. Zhang, "Topologically protected refraction of robust kink states in valley photonic crystals," Nature Physics, Vol. 14, No. 2, 140-144, 2018.
doi:10.1038/nphys4304
19. Yang, B., Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, "Ideal Weyl points and helicoid surface states in artificial photonic crystal structures," Science, Vol. 359, No. 6379, 1013, 2018.
doi:10.1126/science.aaq1221
20. Yang, Y., Z. Gao, H. Xue, L. Zhang, M. He, Z. Yang, R. Singh, Y. Chong, B. Zhang, and H. Chen, "Realization of a three-dimensional photonic topological insulator," Nature, Vol. 565, No. 7741, 622-626, 2019.
doi:10.1038/s41586-018-0829-0
21. Khanikaev, A. B., S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, "Photonic topological insulators," Nature Materials, Vol. 12, No. 3, 233-239, 2013.
doi:10.1038/nmat3520
22. Fu, J.-X., R.-J. Liu, and Z.-Y. Li, "Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces," Applied Physics Letters, Vol. 97, No. 4, 041112, 2010.
doi:10.1063/1.3470873
23. Poo, Y., R.-X. Wu, Z. Lin, Y. Yang, and C. T. Chan, "Experimental realization of self-guiding unidirectional electromagnetic edge states," Physical Review Letters, Vol. 106, No. 9, 093903, 2011.
doi:10.1103/PhysRevLett.106.093903
24. Skirlo, S. A., L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljacic, "Experimental observation of large chern numbers in photonic crystals," Physical Review Letters, Vol. 115, No. 25, 253901, 2015.
doi:10.1103/PhysRevLett.115.253901
25. Blanco-Redondo, A., I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, "Topological optical waveguiding in silicon and the transition between topological and trivial defect states," Physical Review Letters, Vol. 116, No. 16, 163901, 2016.
doi:10.1103/PhysRevLett.116.163901
26. Lu, L., H. Gao, and Z. Wang, "Topological one-way fiber of second Chern number," Nature Communications, Vol. 9, No. 1, 5384, 2018.
doi:10.1038/s41467-018-07817-3
27. Pilozzi, L. and C. Conti, "Topological lasing in resonant photonic structures," Physical Review B, Vol. 93, No. 19, 195317, 2016.
doi:10.1103/PhysRevB.93.195317
28. Zhang, W., X. Xie, H.-M. Hao, J. Dang, S. Xiao, S. Shi, H.-Q. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, "Low-threshold topological nanolasers based on the second-order corner state," Light, Science & Applications, Vol. 9, 2020.
29. Leykam, D. and Y. D. Chong, "Edge solitons in nonlinear-photonic topological insulators," Physical Review Letters, Vol. 117, No. 14, 143901, 2016.
doi:10.1103/PhysRevLett.117.143901
30. Yuan, L., Q. Lin, M. Xiao, and S. Fan, "Synthetic dimension in photonics," Optica, Vol. 5, No. 11, 1396-1405, 2018.
doi:10.1364/OPTICA.5.001396
31. Ozawa, T. and H. M. Price, "Topological quantum matter in synthetic dimensions," Nature Reviews Physics, Vol. 1, No. 5, 349-357, 2019.
doi:10.1038/s42254-019-0045-3
32. Yuan, L., Y. Shi, and S. Fan, "Photonic gauge potential in a system with a synthetic frequency dimension," Opt. Lett., Vol. 41, No. 4, 741-744, 2016.
doi:10.1364/OL.41.000741
33. Ozawa, T., H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, "Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics," Physical Review A, Vol. 93, No. 4, 043827, 2016.
doi:10.1103/PhysRevA.93.043827
34. Bell, B. A., K.Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, and B. J. Eggleton, "Spectral photonic lattices with complex long-range coupling," Optica, Vol. 4, 1433-1436, 2017.
doi:10.1364/OPTICA.4.001433
35. Qin, C., F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alu, and P. Lu, "Spectrum control through discrete frequency di®raction in the presence of photonic Gauge potentials," Physical Review Letters, Vol. 120, No. 13, 133901, 2018.
doi:10.1103/PhysRevLett.120.133901
36. Yuan, L., M. Xiao, Q. Lin, and S. Fan, "Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation," Physical Review B, Vol. 97, No. 10, 104105, 2018.
doi:10.1103/PhysRevB.97.104105
37. Yuan, L., Q. Lin, A. Zhang, M. Xiao, X. Chen, and S. Fan, "Photonic Gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions," Physical Review Letters, Vol. 122, No. 8, 083903, 2019.
doi:10.1103/PhysRevLett.122.083903
38. Luo, X.-W., X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo, and Z.-W. Zhou, "Quantum simulation of 2D topological physics in a 1D array of optical cavities," Nature Communications, Vol. 6, No. 1, 7704, 2015.
doi:10.1038/ncomms8704
39. Zhou, X.-F., X.-W. Luo, S. Wang, G.-C. Guo, X. Zhou, H. Pu, and Z.-W. Zhou, "Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity," Physical Review Letters, Vol. 118, No. 8, 083603, 2017.
doi:10.1103/PhysRevLett.118.083603
40. Luo, X.-W., X. Zhou, J.-S. Xu, C.-F. Li, G.-C. Guo, C. Zhang, and Z.-W. Zhou, "Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light," Nature Communications, Vol. 8, No. 1, 16097, 2017.
doi:10.1038/ncomms16097
41. Regensburger, A., C. Bersch, B. Hinrichs, G. Onishchukov, A. Schreiber, C. Silberhorn, and U. Peschel, "Photon propagation in a discrete fiber network: An interplay of coherence and losses," Physical Review Letters, Vol. 107, No. 23, 233902, 2011.
doi:10.1103/PhysRevLett.107.233902
42. Regensburger, A., C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature, Vol. 488, No. 7410, 167-171, 2012.
doi:10.1038/nature11298
43. Wimmer, M., A. Regensburger, M.-A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, "Observation of optical solitons in PT-symmetric lattices," Nature Communications, Vol. 6, No. 1, 7782, 2015.
doi:10.1038/ncomms8782
44. Wimmer, M., H. M. Price, I. Carusotto, and U. Peschel, "Experimental measurement of the Berry curvature from anomalous transport," Nature Physics, Vol. 13, No. 6, 545-550, 2017.
doi:10.1038/nphys4050
45. Chen, C., X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, "Observation of topologically protected edge states in a photonic two-dimensional quantum walk," Physical Review Letters, Vol. 121, No. 10, 100502, 2018.
doi:10.1103/PhysRevLett.121.100502
46. Dutt, A., M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, "Experimental band structure spectroscopy along a synthetic dimension," Nature Communications, Vol. 10, No. 1, 3122, 2019.
doi:10.1038/s41467-019-11117-9
47. Lustig, E., S.Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, "Photonic topological insulator in synthetic dimensions," Nature, Vol. 567, No. 7748, 356-360, 2019.
doi:10.1038/s41586-019-0943-7
48. Dutt, A., Q. Lin, L. Yuan, M. Minkov, M. Xiao, and S. Fan, "A single photonic cavity with two independent physical synthetic dimensions," Science, Vol. 367, No. 6473, 59, 2020.
doi:10.1126/science.aaz3071
49. Yu, D., L. Yuan, and X. Chen, "Isolated photonic flatband with the effective magnetic flux in a synthetic space including the frequency dimension," Laser & Photonics Reviews, Vol. 14, No. 11, 2000041, 2020.
doi:10.1002/lpor.202000041
50. Malitson, L. H., "Interspecimen comparison of the refractive index of fused silica," Journal of the Optical Society of America (1917--1983), Vol. 55, 1205, 1965.
doi:10.1364/JOSA.55.001205
51. Yuan, L. and S. Fan, "Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator," Optica, Vol. 3, No. 9, 1014-1018, 2016.
doi:10.1364/OPTICA.3.001014
52. Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall, 1984.
53. Little, B. E., S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, "Microring resonator channel dropping filters," Journal of Lightwave Technology, Vol. 15, No. 6, 998-1005, 1997.
doi:10.1109/50.588673
54. Minkov, M., Y. Shi, and S. Fan, "Exact solution to the steady-state dynamics of a periodically modulated resonator," APL Photonics, Vol. 2, No. 7, 076101, 2017.
doi:10.1063/1.4985381
55. Gardiner, C. W. and M. J. Collett, "Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation," Physical Review A, Vol. 31, No. 6, 3761-3774, 1985.
doi:10.1103/PhysRevA.31.3761
56. Fan, S., S. E. Kocabas, and J.-T. Shen, "Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit," Physical Review A, Vol. 82, No. 6, 063821, 2010.
doi:10.1103/PhysRevA.82.063821
57. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Vol. 32, Wiley, 1991.
doi:10.1002/0471213748
58. Zhang, M., B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, "Broadband electro-optic frequency comb generation in a lithium niobate microring resonator," Nature, Vol. 568, No. 7752, 373-377, 2019.
doi:10.1038/s41586-019-1008-7
59. Hu, Y., C. Reimer, A. Shams-Ansari, M. Zhang, and M. Loncar, "Realization of high-dimensional frequency crystals in electro-optic microcombs," Optica, Vol. 7, No. 9, 1189-1194, 2020.
doi:10.1364/OPTICA.395114