Vol. 169
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-11-30
One-Way Topological States Along Vague Boundaries in Synthetic Frequency Dimensions Including Group Velocity Dispersion (Invited)
By
Progress In Electromagnetics Research, Vol. 169, 33-43, 2020
Abstract
We recently proposed a two-dimensional synthetic space including one spatial axis and one synthetic frequency dimension in a one-dimensional ring resonator array [Opt. Lett. 41, 741 (2016)]. Nevertheless, the group velocity dispersion (GVD) of the waveguides that compose rings was ignored for simplicity. In this paper, we extend the previous work and study the topological one-way edge states in such a synthetic space involving GVD. We show that the GVD brings a natural vague boundary in the frequency dimension, so the topological edge state still propagates at several frequency modes unidirectionally along the spatial axis. Positions of such vague boundary can be controlled by changing the magnitude of the GVD. In particular, a relatively strong GVD can degrade this two-dimensional synthetic space to one-dimensional spatial lattice, but yet the one-way state is still preserved in simulations. Our work therefore exhibits the impact of the GVD on topological photonics in the synthetic space, which will be important for future practical experimental implementations.
Citation
Qingrou Shan, Danying Yu, Guangzhen Li, Luqi Yuan, and Xianfeng Chen, "One-Way Topological States Along Vague Boundaries in Synthetic Frequency Dimensions Including Group Velocity Dispersion (Invited)," Progress In Electromagnetics Research, Vol. 169, 33-43, 2020.
doi:10.2528/PIER20083101
References

1. Lu, L., J. D. Joannopoulos, and M. Soljacic, "Topological photonics," Nature Photonics, Vol. 8, No. 11, 821-829, 2014.
doi:10.1038/nphoton.2014.248

2. Khanikaev, A. B. and G. Shvets, "Two-dimensional topological photonics," Nature Photonics, Vol. 11, No. 12, 763-773, 2017.
doi:10.1038/s41566-017-0048-5

3. Ozawa, T., H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, "Topological photonics," Reviews of Modern Physics, Vol. 91, No. 1, 015006, 2019.
doi:10.1103/RevModPhys.91.015006

4. Leykam, D. and L. Yuan, "Topological phases in ring resonators: Recent progress and future prospects," Nanophotonics, Vol. 9, No. 15, 4473, 2020.
doi:10.1515/nanoph-2020-0415

5. Kraus, Y. E., Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, "Topological states and adiabatic pumping in quasicrystals," Physical Review Letters, Vol. 109, No. 10, 106402, 2012.
doi:10.1103/PhysRevLett.109.106402

6. Rechtsman, M. C., J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, "Photonic Floquet topological insulators," Nature, Vol. 496, No. 7444, 196-200, 2013.
doi:10.1038/nature12066

7. Weimann, S., M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, and A. Szameit, "Topologically protected bound states in photonic parity-time-symmetric crystals," Nature Materials, Vol. 16, No. 4, 433-438, 2017.
doi:10.1038/nmat4811

8. Noh, J., S. Huang, D. Leykam, Y. D. Chong, K. P. Chen, and M. C. Rechtsman, "Experimental observation of opticalWeyl points and Fermi arc-like surface states," Nature Physics, Vol. 13, No. 6, 611-617, 2017.
doi:10.1038/nphys4072

9. Stutzer, S., Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, and A. Szameit, "Photonic topological Anderson insulators," Nature, Vol. 560, No. 7719, 461-465, 2018.
doi:10.1038/s41586-018-0418-2

10. Noh, J., S. Huang, K. P. Chen, and M. C. Rechtsman, "Observation of photonic topological valley hall edge states," Physical Review Letters, Vol. 120, No. 6, 063902, 2018.
doi:10.1103/PhysRevLett.120.063902

11. Hafezi, M., S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, "Imaging topological edge states in silicon photonics," Nature Photonics, Vol. 7, No. 12, 1001-1005, 2013.
doi:10.1038/nphoton.2013.274

12. Bandres, M. A., S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, "Topological insulator laser: Experiments," Science, Vol. 359, No. 6381, eaar4005, 2018.
doi:10.1126/science.aar4005

13. Leykam, D., S. Mittal, M. Hafezi, and Y. D. Chong, "Recon¯gurable topological phases in next-nearest-neighbor coupled resonator lattices," Physical Review Letters, Vol. 121, No. 2, 023901, 2018.
doi:10.1103/PhysRevLett.121.023901

14. Mittal, S., V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, and M. Hafezi, "Photonic quadrupole topological phases," Nature Photonics, Vol. 13, No. 10, 692-696, 2019.
doi:10.1038/s41566-019-0452-0

15. Mittal, S., V. V. Orre, D. Leykam, Y. D. Chong, and M. Hafezi, "Photonic anomalous quantum Hall effect," Physical Review Letters, Vol. 123, No. 4, 043201, 2019.
doi:10.1103/PhysRevLett.123.043201

16. Wang, Z., Y. Chong, J. D. Joannopoulos, and M. Soljacic, "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Vol. 461, No. 7265, 772-775, 2009.
doi:10.1038/nature08293

17. Lu, L., Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljacic, "Experimental observation of Weyl points," Science, Vol. 349, No. 6248, 622, 2015.
doi:10.1126/science.aaa9273

18. Gao, F., H. Xue, Z. Yang, K. Lai, Y. Yu, X. Lin, Y. Chong, G. Shvets, and B. Zhang, "Topologically protected refraction of robust kink states in valley photonic crystals," Nature Physics, Vol. 14, No. 2, 140-144, 2018.
doi:10.1038/nphys4304

19. Yang, B., Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, "Ideal Weyl points and helicoid surface states in artificial photonic crystal structures," Science, Vol. 359, No. 6379, 1013, 2018.
doi:10.1126/science.aaq1221

20. Yang, Y., Z. Gao, H. Xue, L. Zhang, M. He, Z. Yang, R. Singh, Y. Chong, B. Zhang, and H. Chen, "Realization of a three-dimensional photonic topological insulator," Nature, Vol. 565, No. 7741, 622-626, 2019.
doi:10.1038/s41586-018-0829-0

21. Khanikaev, A. B., S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, "Photonic topological insulators," Nature Materials, Vol. 12, No. 3, 233-239, 2013.
doi:10.1038/nmat3520

22. Fu, J.-X., R.-J. Liu, and Z.-Y. Li, "Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces," Applied Physics Letters, Vol. 97, No. 4, 041112, 2010.
doi:10.1063/1.3470873

23. Poo, Y., R.-X. Wu, Z. Lin, Y. Yang, and C. T. Chan, "Experimental realization of self-guiding unidirectional electromagnetic edge states," Physical Review Letters, Vol. 106, No. 9, 093903, 2011.
doi:10.1103/PhysRevLett.106.093903

24. Skirlo, S. A., L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljacic, "Experimental observation of large chern numbers in photonic crystals," Physical Review Letters, Vol. 115, No. 25, 253901, 2015.
doi:10.1103/PhysRevLett.115.253901

25. Blanco-Redondo, A., I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, "Topological optical waveguiding in silicon and the transition between topological and trivial defect states," Physical Review Letters, Vol. 116, No. 16, 163901, 2016.
doi:10.1103/PhysRevLett.116.163901

26. Lu, L., H. Gao, and Z. Wang, "Topological one-way fiber of second Chern number," Nature Communications, Vol. 9, No. 1, 5384, 2018.
doi:10.1038/s41467-018-07817-3

27. Pilozzi, L. and C. Conti, "Topological lasing in resonant photonic structures," Physical Review B, Vol. 93, No. 19, 195317, 2016.
doi:10.1103/PhysRevB.93.195317

28. Zhang, W., X. Xie, H.-M. Hao, J. Dang, S. Xiao, S. Shi, H.-Q. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, "Low-threshold topological nanolasers based on the second-order corner state," Light, Science & Applications, Vol. 9, 2020.

29. Leykam, D. and Y. D. Chong, "Edge solitons in nonlinear-photonic topological insulators," Physical Review Letters, Vol. 117, No. 14, 143901, 2016.
doi:10.1103/PhysRevLett.117.143901

30. Yuan, L., Q. Lin, M. Xiao, and S. Fan, "Synthetic dimension in photonics," Optica, Vol. 5, No. 11, 1396-1405, 2018.
doi:10.1364/OPTICA.5.001396

31. Ozawa, T. and H. M. Price, "Topological quantum matter in synthetic dimensions," Nature Reviews Physics, Vol. 1, No. 5, 349-357, 2019.
doi:10.1038/s42254-019-0045-3

32. Yuan, L., Y. Shi, and S. Fan, "Photonic gauge potential in a system with a synthetic frequency dimension," Opt. Lett., Vol. 41, No. 4, 741-744, 2016.
doi:10.1364/OL.41.000741

33. Ozawa, T., H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, "Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics," Physical Review A, Vol. 93, No. 4, 043827, 2016.
doi:10.1103/PhysRevA.93.043827

34. Bell, B. A., K.Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, and B. J. Eggleton, "Spectral photonic lattices with complex long-range coupling," Optica, Vol. 4, 1433-1436, 2017.
doi:10.1364/OPTICA.4.001433

35. Qin, C., F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alu, and P. Lu, "Spectrum control through discrete frequency di®raction in the presence of photonic Gauge potentials," Physical Review Letters, Vol. 120, No. 13, 133901, 2018.
doi:10.1103/PhysRevLett.120.133901

36. Yuan, L., M. Xiao, Q. Lin, and S. Fan, "Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation," Physical Review B, Vol. 97, No. 10, 104105, 2018.
doi:10.1103/PhysRevB.97.104105

37. Yuan, L., Q. Lin, A. Zhang, M. Xiao, X. Chen, and S. Fan, "Photonic Gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions," Physical Review Letters, Vol. 122, No. 8, 083903, 2019.
doi:10.1103/PhysRevLett.122.083903

38. Luo, X.-W., X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo, and Z.-W. Zhou, "Quantum simulation of 2D topological physics in a 1D array of optical cavities," Nature Communications, Vol. 6, No. 1, 7704, 2015.
doi:10.1038/ncomms8704

39. Zhou, X.-F., X.-W. Luo, S. Wang, G.-C. Guo, X. Zhou, H. Pu, and Z.-W. Zhou, "Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity," Physical Review Letters, Vol. 118, No. 8, 083603, 2017.
doi:10.1103/PhysRevLett.118.083603

40. Luo, X.-W., X. Zhou, J.-S. Xu, C.-F. Li, G.-C. Guo, C. Zhang, and Z.-W. Zhou, "Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light," Nature Communications, Vol. 8, No. 1, 16097, 2017.
doi:10.1038/ncomms16097

41. Regensburger, A., C. Bersch, B. Hinrichs, G. Onishchukov, A. Schreiber, C. Silberhorn, and U. Peschel, "Photon propagation in a discrete fiber network: An interplay of coherence and losses," Physical Review Letters, Vol. 107, No. 23, 233902, 2011.
doi:10.1103/PhysRevLett.107.233902

42. Regensburger, A., C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature, Vol. 488, No. 7410, 167-171, 2012.
doi:10.1038/nature11298

43. Wimmer, M., A. Regensburger, M.-A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, "Observation of optical solitons in PT-symmetric lattices," Nature Communications, Vol. 6, No. 1, 7782, 2015.
doi:10.1038/ncomms8782

44. Wimmer, M., H. M. Price, I. Carusotto, and U. Peschel, "Experimental measurement of the Berry curvature from anomalous transport," Nature Physics, Vol. 13, No. 6, 545-550, 2017.
doi:10.1038/nphys4050

45. Chen, C., X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, "Observation of topologically protected edge states in a photonic two-dimensional quantum walk," Physical Review Letters, Vol. 121, No. 10, 100502, 2018.
doi:10.1103/PhysRevLett.121.100502

46. Dutt, A., M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, "Experimental band structure spectroscopy along a synthetic dimension," Nature Communications, Vol. 10, No. 1, 3122, 2019.
doi:10.1038/s41467-019-11117-9

47. Lustig, E., S.Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, "Photonic topological insulator in synthetic dimensions," Nature, Vol. 567, No. 7748, 356-360, 2019.
doi:10.1038/s41586-019-0943-7

48. Dutt, A., Q. Lin, L. Yuan, M. Minkov, M. Xiao, and S. Fan, "A single photonic cavity with two independent physical synthetic dimensions," Science, Vol. 367, No. 6473, 59, 2020.
doi:10.1126/science.aaz3071

49. Yu, D., L. Yuan, and X. Chen, "Isolated photonic flatband with the effective magnetic flux in a synthetic space including the frequency dimension," Laser & Photonics Reviews, Vol. 14, No. 11, 2000041, 2020.
doi:10.1002/lpor.202000041

50. Malitson, L. H., "Interspecimen comparison of the refractive index of fused silica," Journal of the Optical Society of America (1917--1983), Vol. 55, 1205, 1965.
doi:10.1364/JOSA.55.001205

51. Yuan, L. and S. Fan, "Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator," Optica, Vol. 3, No. 9, 1014-1018, 2016.
doi:10.1364/OPTICA.3.001014

52. Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall, 1984.

53. Little, B. E., S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, "Microring resonator channel dropping filters," Journal of Lightwave Technology, Vol. 15, No. 6, 998-1005, 1997.
doi:10.1109/50.588673

54. Minkov, M., Y. Shi, and S. Fan, "Exact solution to the steady-state dynamics of a periodically modulated resonator," APL Photonics, Vol. 2, No. 7, 076101, 2017.
doi:10.1063/1.4985381

55. Gardiner, C. W. and M. J. Collett, "Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation," Physical Review A, Vol. 31, No. 6, 3761-3774, 1985.
doi:10.1103/PhysRevA.31.3761

56. Fan, S., S. E. Kocabas, and J.-T. Shen, "Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit," Physical Review A, Vol. 82, No. 6, 063821, 2010.
doi:10.1103/PhysRevA.82.063821

57. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Vol. 32, Wiley, 1991.
doi:10.1002/0471213748

58. Zhang, M., B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, "Broadband electro-optic frequency comb generation in a lithium niobate microring resonator," Nature, Vol. 568, No. 7752, 373-377, 2019.
doi:10.1038/s41586-019-1008-7

59. Hu, Y., C. Reimer, A. Shams-Ansari, M. Zhang, and M. Loncar, "Realization of high-dimensional frequency crystals in electro-optic microcombs," Optica, Vol. 7, No. 9, 1189-1194, 2020.
doi:10.1364/OPTICA.395114