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Abstract—We recently proposed a two-dimensional synthetic space including one spatial axis and one
synthetic frequency dimension in a one-dimensional ring resonator array [Opt. Lett., Vol. 41, No. 4,
741–744, 2016]. Nevertheless, the group velocity dispersion (GVD) of the waveguides that compose
rings was ignored for simplicity. In this paper, we extend the previous work and study the topological
one-way edge states in such a synthetic space involving GVD. We show that the GVD brings a natural
vague boundary in the frequency dimension, so the topological edge state still propagates at several
frequency modes unidirectionally along the spatial axis. Positions of such vague boundary can be
controlled by changing the magnitude of the GVD. In particular, a relatively strong GVD can degrade
this two-dimensional synthetic space to one-dimensional spatial lattice, but yet the one-way state is still
preserved in simulations. Our work therefore exhibits the impact of the GVD on topological photonics
in the synthetic space, which will be important for future practical experimental implementations.

1. INTRODUCTION

Topological photonics has been drawing remarkable attention in the photonic society over the past
decade [1–4]. Various kinds of photonic platforms have been exploited to study the topological physics
in photonics, including systems of coupled optical waveguides [5–10], arrays of ring resonators [11–15],
photonic crystals [16–20], and metamaterials [21]. Potential applications of topological photonics lead to
extensive achievements in photonic devices like topologically protected unidirectional waveguides [22–
25], topological fiber [26], topological lasing [12, 27, 28], and topological optical switches [29].

Besides achieving topological photonics in systems with real dimensions, recent developments
of topology in synthetic space are of great significance [30, 31]. In photonics, synthetic dimensions
can be constructed by using diverse photonic freedoms such as photonic modes carrying different
frequencies [32–37], different orbital angular momentums of light [38–40], and multiple pulses utilizing
the temporal degree of freedom [41–45], which therefore provide many novel opportunities for exploring
interesting physics along the synthetic dimension. Several experiments have been carried out successfully
to demonstrate synthetic dimensions [34, 35, 42, 46] and also study the topological photonics in synthetic
spaces [45, 47, 48]. Among these platforms, the ring resonators consisting of optical fibers or photonic
waveguides have been shown to be a good candidate to create the synthetic frequency dimension. But
yet, the relation between the boundary along the frequency axis of light and the group velocity dispersion
(GVD) of the materials in the rings is still unclear.

In our work, we explore a two-dimensional synthetic space, including the frequency axis of light
without artificial frequency boundaries, in a one-dimensional ring resonator array constructed by
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dispersive waveguides. In such a two-dimensional synthetic space, the distribution of modulation phases
in each ring is chosen to create the synthetic magnetic field for photons [32, 33]. We show that even
without boundary in the frequency dimension, the topological edge state of the field can still propagate
within some frequency modes unidirectionally along the spatial dimension, which therefore gives a vague
boundary in the frequency dimension due to the effect from the GVD. The range of the vague boundary
is related to the magnitude of the GVD. We find that, as the GVD increases, the effective range of
the frequency dimension narrows down to only two columns, where the topological edge state is still
preserved. Our work explores the impact of the GVD on topological photonics in the synthetic space,
which is important for future studies from experimental aspects.

2. THEORETICAL MODEL

We start with considering a one-dimensional ring resonator array, composed of 5 coupled ring resonators
which carry electro-optic modulators (EOM) as shown in Fig. 1(a). Each ring is undergoing the
dynamic modulation with the modulation frequency Ω and modulation phase ψn, with n being the
integer labelling the ring. The ring resonator supports a set of resonant modes. Without the GVD, the
frequencies of resonant modes are equally spaced with the frequency interval being the free-spectral-
range ΩR. If one chooses Ω = ΩR, modulations in each ring form sideband generations at the frequency
ωm:

ωm = ω0 + mΩ, (1)

where m is an integer to label the m-th resonant mode, and ω0 is defined as the resonant frequency at
the zero GVD point. Since the sideband frequency matches with the resonant frequency in the ring,
the modulation connects the nearby resonant modes and forms the synthetic frequency dimension. In
the weak modulation limit, the system therefore supports a synthetic two-dimensional square lattice
including both the spatial and frequency dimensions as shown in Fig. 1(b). If the modulation phases are
chosen to be ψn = nπ/2, there exists an effective magnetic field in the synthetic space, which generates
topological edge states [32].

Nevertheless, in practical experiments, the ring resonators consist of waveguides having the GVD,
which is taken into account here. The single-mode waveguide in each ring resonator has the dispersion

(a) (b)

Figure 1. (a) A one-dimensional ring resonator array with 5 ring resonators carrying electro-optic
modulators (EOM) which are marked green. External waveguide 1 and waveguide 2 are coupled to the
bottom and the top ring resonator, respectively. The source imports through waveguide 1 while output
spectra get collected through both waveguide 1 and waveguide 2. (b) The two-dimensional synthetic
space with the vertical axis being the spatial dimension and the horizontal axis being the frequency
dimension.
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relation
β (ω) = n (ω)

ω

c
, (2)

where β is the propagation wavevector along the light propagation direction (which is defined as the
z-direction) inside the waveguide. n(ω) represents the effective refractive index. If we consider the
GVD, n(ω) is not a constant. Hence the modulation frequency is no longer resonant with the frequency
spacing between two nearby resonant modes, and frequencies of the sideband generation (at ωm near
ω0) due to modulations are also not equal to the resonant frequencies [33, 49]. For light propagating
after one round-trip in such a ring modulated near ω0, the frequency mismatching from the GVD for
each resonant mode results in the situation that the field accumulates an additional phase, which is not
a multiple of 2π, i.e.,

ϕm = [β (ωm)− β (ω0)]L 6= m · 2π. (3)

Here L is the length of the ring. We use the fused silica as an example and take the Sellmeier equation
given in [50]. In Fig. 2, we plot ϕm/2π near the center wavelength at 1.27 µm with the modulation
frequency Ω = 100 MHz and L = 13m. One can see that the phase offset ∆m ≡ ϕm/2π −m for the
m-th mode becomes much more significant when the mode number m is larger.

(a)

(b)

Figure 2. (a) Additional phases ϕm accumulated around the center wavelength at 1.27µm, with
Ω = 100MHz, L = 13 m, and m = −15, ..., 15 for fused silica [50]. (b) Zoomed-in phases ϕm/2π for
m = ±13, ±14 and ±15, respectively.

In the following, we briefly introduce the numerical formula [32, 51] that we use to study the
propagation of topological edge modes in the synthetic space including the phase offset due to the
GVD. We consider 5 rings (n = 1, ..., 5) coupled with two waveguides as shown in Fig. 1(a). In each
ring resonator, we expand the electric field by the sideband components as

E (t, r⊥, z) =
∑
m

Em (t, z) Em (r⊥) eiωmt, (4)

where r⊥ expresses the directions orthogonal to z. Em(r⊥) is the modal profile, and Em(t, z) is its
amplitude at the m-th sideband. The modal amplitude follows Maxwell’s equations and satisfies the
wave propagation equation by introducing the slow-varying-envelope approximation [52]

(
∂

∂x
+ iβ (ωm)

)
Em (t, z)− ng (ωm)

c

∂

∂t
Em (t, z) = 0. (5)

There exists a natural periodic boundary as Em(t, z + L) = Em(t, z) while the field circulates in the
ring. Hence β(ωm) results in the phase offset ∆m which makes the m-th frequency component cannot
be accumulated constructively during each round-trip propagation.
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The coupling of the fields between two nearest n-th and (n+1)-th ring resonators can be described
by [53, 54]

En
m

(
t+, zn

T

)
=

√
1− γ2En

m

(
t−, zn

T

)− iγEn+1
m

(
t−, zn+1

B

)
, (6)

En+1
m

(
t+, zn+1

B

)
=

√
1− γ2En+1

m

(
t−, zn+1

B

)− iγEn
m

(
t−, zn

T

)
. (7)

Here zn
T and zn+1

B are the top point of the n-th ring and the bottom point of the (n+1)-th ring, marking
the position where the coupling occurs. γ is the coupling strength between resonators, and t± = t+0±.

Two waveguides coupled with two rings at the spatial boundary are used for the input and output
purpose, which follows the input-output equations [55, 56]:

E1
m

(
t+, z1

B

)
=

√
1− η2E1

m

(
t−, z1

B

)− iηEin
m

(
t−

)
, (8)
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(
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m

(
t−, z5

T

)
, (10)

where Ein
m and Eout

m, B/T represent the input source field and output field at the bottom/top waveguide
for the m-th frequency component, respectively. η is the coupling strength between the resonator and
the waveguide.

We allocate the EOM at zn
EOM to induce the sinusoidal dynamic modulation in the n-th ring

resonator. The change of the field follows the standard Bessel expansion [32, 51, 57]

En
m

(
t+, zn

EOM

)
= J0 (α) En

m

(
t−, zn

EOM

)
+
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l

Jl (α) En
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(
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)
eilψn

+
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l

(−1)l Jl (α) En
m+l

(
t−, zn

EOM

)
e−ilψn , (11)

where Jl is the l-th order Bessel function, and α is the modulation strength. For α ¿ 1, the system is
weakly modulated, and one has the approximation that J0(α) ≈ 1 and J±1(α) ≈ α/2, with other orders
of Bessel components being approximately zero.

3. SIMULATIONS AND RESULTS

We perform simulations on this one-dimensional ring resonator array as shown in Fig. 1(a). The ring
resonator array is composed of 5 rings, each of which is modulated with the phase ψn = nπ/2. Moreover,
we choose 31 sideband modes in each ring in simulations, with m = −15, ..., 15. Such a platform
supports a 5 × 31 synthetic lattice in the synthetic space [see Fig. 1(b)]. The GVD is considered
which causes the phase offset ∆m as shown in Fig. 2. The single-frequency input field is injected
through the input waveguide at the bottom of the ring array, while the output signals can be collected
at both waveguides. Eqs. (5)–(11) are used to perform the simulations with parameters α = 0.456,
γ = 0.224Ω/2π, and η = 0.071Ω/2π. The input source has a frequency near ω0 with a small detuning
∼ 2J1(α)Ω/2π, which is chosen to selectively excite the topological edge states [32]. Moreover, an
intrinsic loss γi is added, so we can tune this parameter and find the steady-state field propagation with
different losses.

In Fig. 3, we plot distributions of intensities of sideband modes in all 5 rings in the steady-state
regime in simulations, together with the spectra of the output fields |Eout

B |2 and |Eout
T |2 through the two

waveguides. The intrinsic loss γi is chosen to be 4π2γ2
i /Ω2 = 0.04, 0.02, and 0, respectively. We can

clearly see that the intensity of the field has a clockwise-propagation tendency while γi is decreasing.
The field starts from the bottom center of the synthetic lattice and propagates towards lower modes
in the 1st ring. Such conversion vaguely stops near the −5th mode, and the field transfers from the
1st ring to the 5th ring through several modes near the −5th mode. Moreover, from output spectra,
one sees that |Eout

B |2 in the bottom waveguide gives the frequency conversion to the lower frequency
components. On the other hand, |Eout

T |2 in the top waveguide shows a peak at m = −5, indicating that
the transfer of the field at the vague boundary happens at modes near m = −5. Once the field reaches
the top boundary, it starts the frequency conversion towards higher modes. As a comparison, we also
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Figure 3. Distribution of intensity of sideband modes in the 5 × 31 synthetic lattice and the
corresponding spectra of the output fields |Eout

B |2 and |Eout
T |2 through the two waveguides, with the

phase offset ∆m given in Fig. 2, and (a) 4π2γ2
i /Ω2 = 0.04, (b) 4π2γ2

i /Ω2 = 0.02, (c) 4π2γ2
i /Ω2 = 0, (d)

phase offset being zero and 4π2γ2
i /Ω2 = 0, respectively in simulations. Orange arrow indicates that the

0th mode at the 1st ring is excited by the external source.

show distributions of intensities in such a synthetic lattice without considering GVD in Fig. 3(d) (i.e.,
phase offset being zero, under the condition 4π2γ2

i /Ω2 = 0), where one can see the expected edge mode
around the real spatial boundary as well as the artificially-set spectral boundary at m = −15 [32]. Thus,
the unidirectional propagation of the edge state in such a synthetic space elucidates that the frequency
mismatching from the GVD can induce the vague boundary at the synthetic frequency dimension, where
the topological photonics properties still exhibit.

We can arbitrarily change the phase offset to explore the dynamics in the synthetic lattice with
the vague boundary. We first set ∆(1)

m = (ϕm/2π − m)/2 = ∆m/2, which gives the half phase offset
compared with ∆m in the previous case. Fig. 4 plots the distributions of intensities of sideband modes
and the intensity spectra of the output fields with the offset ∆(1)

m and all other parameters being the
same as those in the previous case. One can still see the one-way propagation in the synthetic lattice,
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(a)

(b)

(c)

Figure 4. Distribution of intensity of sideband modes in the 5 × 31 synthetic lattice, and the
corresponding spectra of the output fields |Eout

B |2 and |Eout
T |2 through the two waveguides, with the

phase offset ∆(1)
m , and (a) 4π2γ2

i /Ω2 = 0.04, (b) 4π2γ2
i /Ω2 = 0.02, (c) 4π2γ2

i /Ω2 = 0, respectively in
simulations. Orange arrow indicates that the 0th mode at the 1st ring is excited by the external source.

yet the vague boundary is shifted. Peaks around m = −10 are shown in the output spectra |Eout
T |2. The

effective area is broadened since the offset from the GVD is smaller. Hence, the choice of the material
GVD can be used to control where the vague boundary is at the frequency axis that the light of one-way
edge mode transports though in the synthetic lattice.

Similarly, one can also set the phase offset to be ∆(2)
m ≡ 2(ϕm/2π −m) = 2∆m but keep the other

parameters unchanged in simulations. The corresponding distributions of intensities of sideband modes
and the intensity spectra of the output fields are shown in Fig. 5. Besides the one-way edge mode exhibits
in the synthetic lattice, the vague boundary is shifted in the opposite direction as compared with plots
in Fig. 4 for ∆(1)

m . In simulations, both vague boundaries at the negative and positive frequency axes
can be seen in the intensity distribution in the simulation with 4π2γ2

i /Ω2 = 0. Larger choice of the
material GVD therefore decreases the effective area in the synthetic lattice.

It is interesting to explore what is the limit condition for changing vague boundary to shrink
the effective area in the synthetic space. Hence, we set ∆(3)

m ≡ 10(ϕm/2π − m) = 10∆m and
∆(4)

m ≡ 20(ϕm/2π−m) = 20∆m, respectively. The other parameters are still chosen to be the same, but
the intrinsic loss is set as 4π2γ2

i /Ω2 = 0.08, 0.04, and 0, respectively. The distributions of intensities of
the sideband modes are shown in Fig. 6. In Figs. 6(a)–6(c), for increased magnitude of GVD with the
offset ∆(3)

m , the clockwise one-way edge state remains explicit but in the synthetic frequency dimension
persisting merely in two columns. The intensity of the field propagates towards one sideband mode left
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(a)

(b)

(c)

Figure 5. Distribution of intensity of sideband modes in the 5 × 31 synthetic lattice and the
corresponding spectra of the output fields |Eout

B |2 and |Eout
T |2 through the two waveguides, with the

phase offset ∆(2)
m , and (a) 4π2γ2

i /Ω2 = 0.04, (b) 4π2γ2
i /Ω2 = 0.02, (c) 4π2γ2

i /Ω2 = 0, respectively in
simulations. Orange arrow indicates that the 0th mode at the 1st ring is excited by the external source.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Distribution of intensity of sideband modes in the 5× 31 synthetic lattice. The phase offset
is ∆(3)

m for the left panel and (a) 4π2γ2
i /Ω2 = 0.08, (b) 4π2γ2

i /Ω2 = 0.04, (c) 4π2γ2
i /Ω2 = 0, respectively,

while the phase offset is ∆(4)
m for the right panel and (d) 4π2γ2

i /Ω2 = 0.08, (e) 4π2γ2
i /Ω2 = 0.04, (f)

4π2γ2
i /Ω2 = 0, respectively in the simulations. Orange arrow indicates that the 0th mode at the 1st

ring is excited by the external source.
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from the initial excitation mode, then it directly propagates along the spatial dimension to the upper
side of the lattice, and afterwards it bounces back. On the other hand, for an even larger GVD with
the offset ∆(4)

m , the propagation of the edge state at the vague boundary in a two-dimensional synthetic
lattice disappears, as shown in Figs. 6(d)–6(f). The synthetic frequency dimension fades away, so the
field propagates only at the 0th mode in spatial direction. However, it is interesting to see that, in this
effective one-dimensional lattice, the energy is mostly localized at the 0th sideband mode in the 1st ring,
but the propagation still shows one-way directionality towards the 5th ring. Thus, for a relatively large
GVD, the synthetic frequency dimension breaks, and one cannot construct an effective two-dimensional
synthetic space.

4. CONCLUSION

In summary, we work on a synthetic lattice including both spatial and frequency dimensions, where
an effective gauge field can be prepared [32], and study the topological one-way edge modes under
the effect of the GVD. The GVD provides a natural vague boundary at the frequency dimension, so
the one-way edge mode of the light can propagate unidirectionally along the spatial axis without an
artificial boundary prepared at the frequency dimension. Magnitudes of the GVD can be used to control
the effective area in the synthetic lattice. In particular, a relatively large GVD breaks the synthetic
frequency dimension. Our work is important for further experimental studies of the synthetic frequency
dimension based on either fiber loops [46, 48] or lithium niobate on-chip implementations [58, 59].
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observation of large chern numbers in photonic crystals,” Physical Review Letters, Vol. 115, No. 25,
253901, 2015.

25. Blanco-Redondo, A., I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman,
B. J. Eggleton, and M. Segev, “Topological optical waveguiding in silicon and the transition between
topological and trivial defect states,” Physical Review Letters, Vol. 116, No. 16, 163901, 2016.

26. Lu, L., H. Gao, and Z. Wang, “Topological one-way fiber of second Chern number,” Nature
Communications, Vol. 9, No. 1, 5384, 2018.

27. Pilozzi, L. and C. Conti, “Topological lasing in resonant photonic structures,” Physical Review B,
Vol. 93, No. 19, 195317, 2016.

28. Zhang, W., X. Xie, H.-M. Hao, J. Dang, S. Xiao, S. Shi, H.-Q. Ni, Z. Niu, C. Wang, K. Jin,
X. Zhang, and X. Xu, “Low-threshold topological nanolasers based on the second-order corner
state,” Light, Science & Applications, Vol. 9, 2020.



42 Shan et al.

29. Leykam, D. and Y. D. Chong, “Edge solitons in nonlinear-photonic topological insulators,” Physical
Review Letters, Vol. 117, No. 14, 143901, 2016.

30. Yuan, L., Q. Lin, M. Xiao, and S. Fan, “Synthetic dimension in photonics,” Optica, Vol. 5, No. 11,
1396–1405, 2018.

31. Ozawa, T. and H. M. Price, “Topological quantum matter in synthetic dimensions,” Nature Reviews
Physics, Vol. 1, No. 5, 349–357, 2019.

32. Yuan, L., Y. Shi, and S. Fan, “Photonic gauge potential in a system with a synthetic frequency
dimension,” Opt. Lett., Vol. 41, No. 4, 741–744, 2016.

33. Ozawa, T., H. M. Price, N. Goldman, O. Zilberberg, and I. Carusotto, “Synthetic dimensions in
integrated photonics: From optical isolation to four-dimensional quantum Hall physics,” Physical
Review A, Vol. 93, No. 4, 043827, 2016.

34. Bell, B. A., K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, and B. J. Eggleton, “Spectral
photonic lattices with complex long-range coupling,” Optica, Vol. 4, 1433–1436, 2017.

35. Qin, C., F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and
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