Vol. 94
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-13
Decoupling of Dual-Band Microstrip Antenna Array with Hybrid Resonant Structure
By
Progress In Electromagnetics Research Letters, Vol. 94, 9-17, 2020
Abstract
A novel hybrid resonant structure is proposed to decouple a dual-band microstrip antenna array. The decoupling structure is composed of two H-shaped strips, and the lower and upper ones respectively collaborate with an X-shaped slot to reduce mutual coupling at 4.5 GHz and 5.5 GHz. Two sub-patches of different sizes share a connection feeding line to construct the dual-band array element, which is arranged along H-plane with the edge-to-edge spacing 0.15 λl and 0.24λhl and λh are the free-space wavelengths of 4.5 GHz and 5.5 GHz, respectively). Simulated and measured results indicate that through loading the hybrid resonant structure, 31.6dB and 24.0dB reductions of mutual coupling at two frequencies are obtained, while the levels of coupling coefficients are both below -30 dB in two operating bands. Moreover, the modified radiation patterns, improved diversity metrics and weakened coupled current distributions further verify its superior decoupling capability. The proposed decoupling structure reveals its promise in being employed in communication system and multielement linearly antenna arrays.
Citation
Xin-Hong Li, "Decoupling of Dual-Band Microstrip Antenna Array with Hybrid Resonant Structure," Progress In Electromagnetics Research Letters, Vol. 94, 9-17, 2020.
doi:10.2528/PIERL20073002
References

1. Allen, J. L. and B. L. Diamond, "Mutual coupling in array antennas," Technical Report 424 (ESDTR-66-443), Lincoln Laboratory, M.I.T., Lexington, MA, 1966.

2. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

3. Zhu, Y., Y. Chen, and S. Yang, "Decoupling and low-profile design of dual-band dual-polarized base station antennas using frequency-selective surface," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5272-5281, 2019.
doi:10.1109/TAP.2019.2916730

4. Liu, F., J. Guo, L. Zhao, G.-L. Huang, Y. Li, and Y. Yin, "Dual-band metasurface-based decoupling method for two closely packed dual-band antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 552-557, 2020.
doi:10.1109/TAP.2019.2940316

5. Wang, Z., C. Li, and Y. Yin, "A Meta-surface Antenna Array Decoupling (MAAD) design to improve the isolation performance in a MIMO system," IEEE Access, Vol. 8, 61797-61805, 2020.
doi:10.1109/ACCESS.2020.2983482

6. Abdel-Rahman, A. B., "Coupling reduction of antenna array elements using small interdigital capacitor loaded slots," Progress In Electromagnetics Research C, Vol. 27, 15-26, 2012.
doi:10.2528/PIERC11111809

7. Wei, K., J.-Y. Li, L. Wang, Z.-J. Xing, and R. Xu, "Mutual coupling reduction by novel fractal defected ground structure bandgap filter," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4328-4335, 2016.
doi:10.1109/TAP.2016.2591058

8. Han, X., H. Hafdallah Ouslimani, T. Zhang, and A. C. Priou, "CSRRs for efficient reduction of the electromagnetic interferences and mutual coupling in microstrip circuits," Progress In Electromagnetics Research B, Vol. 42, 291-309, 2012.
doi:10.2528/PIERB12052406

9. Fritz-Andrade, E., A. Perez-Miguel, R. Gomez-Villanueva, and H. Jardon-Aguilar, "Characteristic mode analysis applied to reduce the mutual coupling of a four-element patch MIMO antenna using a defected ground structure," IET Microwaves, Antennas & Propagation, Vol. 14, No. 2, 215-226, 2020.
doi:10.1049/iet-map.2019.0570

10. Wu, K. L., C. Wei, X. Mei, and Z. Y. Zhang, "Array-antenna decoupling surface," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6728-6738, 2017.
doi:10.1109/TAP.2017.2712818

11. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meanderline resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156

12. Maddio, S., G. Pelosi, M. Righini, S. Selleri, and I. Vecchi, "Mutual coupling reduction in multilayer patch antennas via meander line parasites," Electronic Letters, Vol. 54, No. 15, 922-924, 2018.
doi:10.1049/el.2018.1332

13. Zou, X.-J., G.-M. Wang, Y.-W. Wang, and H.-P. Li, "An efficient decoupling network between feeding points for multielement linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3101-3108, 2019.
doi:10.1109/TAP.2019.2899039

14. Xia, R. L., S. W. Qu, P. F. Li, D. Q. Yang, S. Yang, and Z. P. Nie, "Wide-angle scanning phased array using an efficient decoupling network," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5161-5165, 2015.
doi:10.1109/TAP.2015.2476342

15. Albannay, M. M., J. C. Coetzee, X. Tang, and K. Mouthaan, "Dual-frequency decoupling for two distinct antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1315-1318, 2012.
doi:10.1109/LAWP.2012.2226635

16. Ou, Y., X. Cai, and K. Qian, "Two-element compact antennas decoupled with a simple neutralization line," Progress In Electromagnetics Research Letters, Vol. 65, 63-68, 2017.
doi:10.2528/PIERL16111801

17. Zhao, L. and K.-L. Wu, "A dual-band coupled resonator decoupling network for two coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 2843-2850, 2015.
doi:10.1109/TAP.2015.2421973

18. Hong, J. S., Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619

19. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.

20. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

21. Kildal, P. S. and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: Simulations and measurements in a reverberation chamber," IEEE Communications Magazine, Vol. 42, No. 12, 104-112, 2004.
doi:10.1109/MCOM.2004.1367562

22. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, 2013.
doi:10.1109/MAP.2013.6735522