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Decoupling of Dual-Band Microstrip Antenna Array with Hybrid
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Abstract—A novel hybrid resonant structure is proposed to decouple a dual-band microstrip antenna
array. The decoupling structure is composed of two H-shaped strips, and the lower and upper ones
respectively collaborate with an X-shaped slot to reduce mutual coupling at 4.5 GHz and 5.5 GHz. Two
sub-patches of different sizes share a connection feeding line to construct the dual-band array element,
which is arranged along H-plane with the edge-to-edge spacing 0.15λl and 0.24λh (λl and λh are the
free-space wavelengths of 4.5 GHz and 5.5 GHz, respectively). Simulated and measured results indicate
that through loading the hybrid resonant structure, 31.6 dB and 24.0 dB reductions of mutual coupling
at two frequencies are obtained, while the levels of coupling coefficients are both below −30 dB in two
operating bands. Moreover, the modified radiation patterns, improved diversity metrics, and weakened
coupled current distributions further verify its superior decoupling capability. The proposed decoupling
structure reveals its promise in being employed in communication system and multielement linearly
antenna arrays.

1. INTRODUCTION

Rapid advancement in wireless communication system calls for antenna arrays with superior
performances, where mutual coupling is a crucial concern once densely arranging array elements, as it
can result in a series of problems including mismatched impedance, deviated radiation pattern, enlarged
side lobe, and scan blindness [1]. Also, the sizes of highly integrated devices are usually small due to
limited space, but mutual coupling can merely be ignored when the distance between array elements
is much larger than half wavelength. Meanwhile, to satisfy the demand of working in dual frequencies,
dual-band antenna is often chosen as the basic element. Thus, it is of great significance to reduce
mutual coupling of dual-band antenna array. Until now, various decoupling technologies have been
presented and can be divided into three general categories. The first type is artificial electromagnetic
material, which contains electromagnetic bandgap [2], frequency selective surface [3], metasurface [4, 5],
defected ground structure [6–9], and array-antenna decoupling surface [10]. The second type is resonant
structure [11, 12], which is employed to decouple antenna arrays at certain frequencies based on its
resonant characteristic. The last one is to introduce a decoupling network [13, 14] to create extra
currents to cancel out the coupled ones, and it is often adopted for dual-band cases [15–17]. However,
most dual-band cases focus on decoupling monopole antenna arrays, and few hammer at microstrip
antenna array. Also, researches on employing resonant structure for decoupling dual-band antenna
arrays are scarcely reported.

In this research, a hybrid resonant structure, composed of an X-shaped slot and two H-shaped
strips, is proposed to decouple dual-band microstrip antenna array at 4.5 GHz and 5.5 GHz. The array
element combines two sub-patches of different sizes with a communal connection feeding line to generate
two resonant frequencies. Then, the elements are arranged along H-plane, whose edge-to-edge distances
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are 0.15λl and 0.24λh at two frequencies. The lower H-shaped strip and the X-shaped slot work together
to reduce mutual coupling at 4.5 GHz, while the upper one collaborates with the slot to function at
5.5 GHz. Finally, the results exhibit that mutual coupling at two frequencies is reduced by 31.6 dB and
24.0 dB, and the isolations are above 30 dB in the working bands. Also, the H-plane radiation patterns
are modified, and the diversity metrics are improved. The current distributions further elucidate the
operating mechanisms and decoupling capability.

2. MICROSTRIP ANTENNA ARRAY AND HYBRID RESONANT STRUCTURE
DESIGN

2.1. Dual-Band Antenna Array

Figure 1 demonstrates the geometry and configuration of the proposed two-element dual-band microstrip
antenna array. The array element consists of two sub-patches with different sizes and a connection line,
which is fed by a coaxial probe. When the array works at 4.5 GHz, the large sub-patch with the size
of l1 × w1 plays a major role, so does the small one with the size of l2 × w2 at 5.5 GHz. Thus, through
concatenating them together with line w3, the single antenna element can simultaneously operate at
dual bands. The microstrip antenna array elements, printed on an FR4 substrate with the total size of
Lg×Wg×h and the relative permittivity of 4.3, are separated by the spacing d, making the edge-to-edge
distances 0.15λl and 0.24λh at two frequencies, then the center-to-center distances are 0.45λl and 0.55λh,
indicating relatively strong mutual coupling between array elements especially at low frequency. After
being optimized in the simulation software HFSS, the detailed dimensions of the dual-band antenna
array are listed in Table 1. Fig. 3 plots the simulated S-parameters of the coupled dual-band antenna

Figure 1. The geometry and configuration of the dual-band microstrip antenna array.

Table 1. Dimensions of the dual-band antenna array and hybrid decoupling resonant structure (Unit:
mm).

Lg Wg h l1 l2 xf g

90 70 1.5 20 16.8 6.5 0.5
w1 w2 w3 w4 w5 d s1

15 12.5 10 6 5 10 5
s2 s3 s4 s5 s6 s7 s8

6 1.5 4.5 9 2 60 8
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array. It is apparent that the proposed antenna array resonates at two frequencies, and the coupling
coefficients reach −14.6 dB and −19.6 dB at 4.5 GHz and 5.5 GHz, respectively.

2.2. Hybrid Decoupling Resonant Structure

It is conspicuous that a shorted microstrip line whose length is smaller than λg/4 (λg is the guided
wavelength) usually acts as an inductor, while that with the length larger than λg/4 can behave as a
combination of an inductor and a capacitor [18, 19]. Also, the slot can be deemed as a capacitor [20].
Therefore, by connecting two H-shaped strips and an X-shaped slot via four metallized holes, a novel
hybrid decoupling resonant structure, displayed in Fig. 2, is proposed to reduce mutual coupling of the
above dual-band antenna array. The length of the lower H-shaped strip is designed to be smaller than
λgl/4 (λgl is the guided wavelength at 4.5 GHz) because of the limited space, while that of the upper
one can be larger than λgh/4 (λgh is the guided wavelength at 5.5 GHz). Therefore, the low and high
resonant frequencies, fl and fh, can be represented as

fl = 1/2π
√

LlC, fh = 1/2π
√

LhCCh/ (C + Ch) (1)
where Ll and Lh are the equivalent inductances of the lower and upper H-shaped strips, respectively, and
C and Ch are the equivalent capacitances of the X-shaped slot and the upper H-shaped strips. Through
changing the sizes of the lower strip and slot, fl can be adjusted to the desired 4.5 GHz. Likewise, fh can
be fixed to 5.5 GHz when proper sizes of the upper strip and slot are selected. Based on the designing
principle and optimization in HFSS, the dimensions of the hybrid decoupling resonant structure are
ascertained in Table 1. From Fig. 3 which displays the simulated S-parameters of the decoupled antenna
array, the hybrid decoupling resonant structure exhibits superior decoupling capability, as the coupling
coefficients are reduced to −52.0 dB and −38.4 dB at two frequencies.

(a) (b)

Figure 2. The dual-band antenna array loaded with the hybrid decoupling resonant structure. (a) The
top view; (b) The bottom view.

3. RESULTS AND DISCUSSION

To validate the effectiveness of the proposed hybrid decoupling resonant structure, the coupled and
decoupled dual-band antenna arrays are fabricated, measured, and compared, whose prototypes are
shown in Fig. 4.

3.1. S-Parameters

Figure 5 demonstrates the simulated and measured S-parameters of the two arrays, which indicate the
good agreement with each other. The little discrepancy lies in the manufacturing and assembling errors.
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Figure 3. Simulated S-parameters of the coupled and decoupled dual-band antenna arrays.

(a) (b)

Figure 4. The fabricated prototypes of the antenna arrays. (a) The coupled array; (b) The decoupled
array.

Figure 5. Simulated (line) and measured (line and symbol) S-parameters of the coupled and decoupled
dual-band antenna arrays.
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It is obvious that the two arrays are both well matched at designed frequencies. The simulated mutual
coupling reductions are 37.4 dB and 18.8 dB. And at 4.5 GHz, the measured coupling coefficient drops
from −13.6 dB to −45.2 dB, while at 5.5 GHz, the coefficient drops from −18.6 dB to −42.6 dB. That is
to say, the measured coupling reductions are 31.6 dB and 24.0 dB, respectively. Meanwhile, in the two
working bands, 4.48–4.58 GHz and 5.46–5.56 GHz, the levels of mutual coupling coefficients are both
below −30 dB, which elucidates the superior decoupling capability of the proposed hybrid decoupling
resonant structure.

3.2. Radiation Pattern and Gain

Figure 6 plots the simulated and measured radiation patterns of the two antenna arrays. It should be
mentioned that during simulation or measurement, only port 1 is excited, while port 2 is terminated to a
50 Ω load. Usually, the strong mutual coupling between antenna elements can deteriorate the radiation
patterns, especially in the arrangement direction. From Fig. 6(a), since the coupled dual-band antenna
array is arranged in H-plane, the main direction of the H-plane radiation pattern deviates to 24◦ at
4.5 GHz. However, after the hybrid decoupling structure is loaded, the radiation pattern is modified to
the broadside. Also, the simulated and measured gains respectively increase from 6.02 dBi and 5.73 dBi

(a) (b)

(c) (d)

Figure 6. Simulated and measured radiation patterns of the coupled and decoupled dual-band antenna
arrays with port 1 excited. (a) E-plane at 4.5 GHz; (b) H-plane at 4.5 GHz; (c) E-plane at 5.5 GHz;
(d) H-plane at 5.5 GHz.
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to 6.32 dBi and 5.96 dBi. Meanwhile, for the H-plane radiation pattern at 5.5 GHz, due to the relatively
low mutual coupling, the coupled array can radiate to the broadside without any deflection, but the gain
is a little improved. In detail, the simulated and measured gains respectively increase from 6.04 dBi and
5.82 dBi to 6.35 dBi and 6.17 dBi. Besides, the E-plane radiation patterns of the coupled and decoupled
antenna arrays also deviate on account of the influence from relatively adjacent frequencies. On account
of the asymmetry of the antenna element and array, the simulated and measured radiation patterns with
two ports excited are also demonstrated in Fig. 7. The similar deviations exist in the E-plane radiation
patterns, but the antenna array can radiate to the broadside in the H-plane. Moreover, the measured
gains at 4.5 GHz and 5.5 GHz respectively increase from 8.32 dBi and 8.56 dBi to 8.97 dBi and 8.61 dBi.
It is also evident that the backward radiation of the decoupled antenna array is enhanced, which exists in
other references that adopt defected ground structures or slots [6–8] as decoupling structures, especially
when the element spacing is small. However, compared to the superior decoupling capability of the
hybrid decoupling structure, the drawbacks are inferior.

(a) (b)

(c) (d)

Figure 7. Simulated and measured radiation patterns of the coupled and decoupled dual-band antenna
arrays with two ports excited. (a) E-plane at 4.5 GHz; (b) H-plane at 4.5 GHz; (c) E-plane at 5.5 GHz;
(d) H-plane at 5.5 GHz.
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3.3. Diversity Metrics

For a multiple input multiple output (MIMO) system, diversity metrics, including envelop correlation
coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), etc., are always
significant parameters to evaluate its communication performance. ECC (ρe) is a typical parameter
that can reveal the correlation of the antenna array elements, so is DG. They can be represented as [9]

ρe =
|S∗

11S12 + S∗
21S22|2(

1 − |S11|2 − |S21|2
) (

1 − |S22|2 − |S12|2
) (2)

DG = 10
√

1 − ρe (3)

Usually, a minimized ECC and a maximized DG are required to maintain a high channel capacity
and a good diversity performance [21]. Fig. 8(a) plots the measured calculated ECC and DG of the
coupled and decoupled dual-band antenna arrays. It is apparent that the ECCs at 4.5 GHz and 5.5 GHz
are decreased from 3.1×10−4 and 2×10−5 to 2×10−6 and 8.7×10−6, which indicates a better diversity
performance after decoupling.

(a) (b)

Figure 8. Diversity metrics of the coupled and decoupled dual-band antenna arrays. (a) ECC and
DG; (b) TARC of the coupled (line) and decoupled (line and symbol) arrays.

One crucial index of the phased array is TARC, which takes the effect of the phases of the incoming
signals into consideration. TARC is given by [22]

Γt
a =

√
1
2

(
|S11 + S12ejθ|2 + |S21 + S22ejθ|2

)
(4)

where θ is the input feeding phase. Fig. 8(b) displays the measured TARC of the coupled and decoupled
dual-band antenna arrays. At 4.5 GHz, TARC of the coupled array increases with θ varying, but that
of the decoupled one remains below −20 dB. Meanwhile, the change of θ has little effect on TARCs at
5.5 GHz. Therefore, it is concluded that the hybrid decoupling structure can improve TARC and the
scanning characteristic.

3.4. Current Distribution

To better intuitively understand the operating mechanisms of the dual-band antenna array and the
hybrid decoupling resonant structure, the current distributions of the two antenna arrays are displayed
in Fig. 9. Likewise, during simulation, port 1 is excited with port 2 connected to a 50 Ω load. From
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(a) (b)

(c) (d)

Figure 9. Current distributions of two antenna arrays. (a) The coupled array at 4.5 GHz; (b) The
decoupled array at 4.5 GHz; (c) The coupled array at 5.5 GHz; (d) The decoupled array at 5.5 GHz.

Figs. 9(a) and (c), the working principle of the dual-band antenna array can be clarified. The large sub-
patch dominates the radiation at 4.5 GHz, while the small one mainly works at 5.5 GHz. Besides, the
mutual coupling between antenna elements is strong. But after adding the hybrid decoupling resonant
structure, the currents coupled to the other patch are greatly weakened, which are evidently exhibited in
Figs. 9(b) and (d). The lower H-shaped strip and X-shaped slot work together to obstruct the currents
from flowing to the other patch at 4.5 GHz, while the upper strip and the slot collaborate to decouple
the array at 5.5 GHz.

4. CONCLUSION

In this research, a novel hybrid decoupling resonant structure is presented to decouple a dual-band
microstrip antenna array, whose element consists of two sub-patches and one connection feeding line.
The lower and upper H-shaped strips respectively collaborate with the X-shaped slot to reduce mutual
coupling at 4.5 GHz and 5.5 GHz. Simulated and measured results coincide with each other, revealing
the superior decoupling capability of the proposed structure. 31.6 dB and 24.0 dB mutual coupling
reductions are achieved, and the levels of coupling coefficients are both below −30 dB during the
operating bands. Moreover, the H-plane radiation patterns are modified to the broadside, and the gains
at two frequencies are improved. The results indicate that the proposed hybrid decoupling resonant
structure has potential in the application of communication system and multielement linearly arrays.
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