Vol. 98
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-28
Shielding Effectiveness of a Closed Cylindrical Surface Simulated by n Dielectric Coated Conducting Strips
By
Progress In Electromagnetics Research M, Vol. 98, 1-10, 2020
Abstract
The paper aims at studying the shielding effectiveness of a closed cylindrical surface simulated by N dielectric coated conducting strips. The far fields of an electric line source in the presence of the simulated surface and in the absence of the surface were calculated, and the ratio between them represents the shielding effectiveness produced around the surface. The solution of the problem was developed based on full wave analysis. In which all fields are represented in terms of infinite series of Mathieu functions. The addition theorem of Mathieu function was employed to facilitate the application of boundary condition. Computer program was developed based on the resulting formulations to produce numerical values. Numerical results are presented for circular and square cross-sectional cylindrical surfaces. Comparison with the published data for the radiation from slotted circular cylinder showed excellent agreement. Other useful results for shielding effectiveness are furnished.
Citation
Hassan Ragheb, "Shielding Effectiveness of a Closed Cylindrical Surface Simulated by n Dielectric Coated Conducting Strips," Progress In Electromagnetics Research M, Vol. 98, 1-10, 2020.
doi:10.2528/PIERM20072702
References

1. Robinson, M. P., J. D. Turner, D. W. P. Thomas, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, T. M. Benson, and C. Christopoulos, "Shielding effectiveness of a rectangular enclosure with a rectangular aperture," Electronics Letters, Vol. 32, No. 17, 1559-1560, Aug. 1996.
doi:10.1049/el:19961030

2. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 240-248, Aug. 1998.
doi:10.1109/15.709422

3. Dehkhoda, P., A. Tavakoli, and R.Moini, "An efficient and reliable shielding effectiveness evaluation of a rectangular enclosure with numerous apertures," IEEE Trans. Electromag. Compat., Vol. 50, No. 1, 208-212, Feb. 2008.
doi:10.1109/TEMC.2007.911922

4. Park, H. H. and H. J. Eom, "Electromagnetic penetration into a rectangular cavity with multiple rectangular apertures in a conducting plane," IEEE Trans. Electromag. Compat., Vol. 42, No. 3, 303-307, Aug. 2000.
doi:10.1109/15.865338

5. Bahadorzadeh Ghandehari, M., M. Naser-Moghaddasi, and A. R. Attari, "Improving of shielding effectiveness of a rectangular metallic enclosure with aperture by using extra wall," Progress In Electromagnetics Research Letters, Vol. 1, 45-50, 2008.
doi:10.2528/PIERL07110706

6. Wallyn, W., D. De Zutter, and H. Rogier, "Prediction of the shielding and resonant behavior of multisection enclosures based on magnetic current modeling," IEEE Trans. Electromag. Compat., Vol. 44, No. 1, 130-138, Feb. 2002.
doi:10.1109/15.990719

7. Edrisi, M. and A. Khodabakhshian, "Simple methodology for electric and magnetic shielding effectiveness computation of enclosures for electromagnetic compatibility use," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1051-1060, 2006.
doi:10.1163/156939306776930312

8. Jiao, C., X. Cui, L. Li, and H. Li, "Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture," IEEE Trans. Magnetics, Vol. 42, No. 4, 1075-1078, Apr. 2006.
doi:10.1109/TMAG.2006.871638

9. Li, M., K. P. Ma, D. M. Hockanso, J. L. Drewniak, T. H. Hubing, and T. P. Van Doren, "Numerical and experimental corroboration of an FDTD thin-slot model for slots near corners of shielding enclosures," IEEE Trans. Electromag. Compat., Vol. 39, No. 3, 225-232, 1997.
doi:10.1109/15.618050

10. Edelvik, F. and T. Weiland, "Stable modeling of arbitrarily oriented thin slots in the FDTD method," IEEE Trans. Electromag. Compat., Vol. 47, No. 3, 440-446, Aug. 2005.
doi:10.1109/TEMC.2005.853160

11. Chen, C. C., "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave. Theory Tech., Vol. 21, No. 1, 1-6, Jan. 1973.
doi:10.1109/TMTT.1973.1127906

12. Wallyn, W., D. De Zutter, and E. Laermans, "Fast effectiveness prediction for realistic rectangular enclosure," IEEE Trans. Electromag. Compat., Vol. 45, No. 4, 639-643, Nov. 2003.
doi:10.1109/TEMC.2003.819063

13. Lee, W.-S., H.-L. Lee, H.-S. Jang, H.-S. Tae, and J.-W. Yu, "Analysis of scattering with multi-slotted cylinder with thickness: TM case," Progress In Electromagnetics Research, Vol. 128, 105-120, 2012.
doi:10.2528/PIER12041818

14. Jang, H.-S., W.-S. Lee, H.-S. Tae, H.-L. Lee, and J.-W. Yu, "Transmission and shielding from a magnetic line current placed inside or outside of the multi-slotted circular cylinder," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11–12, 1507-1520, Aug. 2012.
doi:10.1080/09205071.2012.703570

15. Holland, R. and V. Cable, "Mathieu function and their applications to scattering by a coated strip," IEEE Trans. Electromag. Compat., Vol. 34, 9-16, Feb. 1992.
doi:10.1109/15.121661

16. Sebak, A., "Electromagnetic scattering by two elliptic cylinders," IEEE Antennas and Propag., Vol. 42, No. 11, 1521-1527, 1994.
doi:10.1109/8.362785

17. Ragheb, H. and E. Hassan, "Plane wave scattered by N dielectric coated conducting strips," IET Microwave, Antennas and Propagation, Vol. 6, No. 8, 938-944, 2012.
doi:10.1049/iet-map.2011.0542