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Shielding Effectiveness of a Closed Cylindrical Surface Simulated

by N Dielectric Coated Conducting Strips

Hassan Ragheb*

Abstract—The paper aims at studying the shielding effectiveness of a closed cylindrical surface
simulated by N dielectric coated conducting strips. The far fields of an electric line source in the
presence of the simulated surface and in the absence of the surface were calculated, and the ratio
between them represents the shielding effectiveness produced around the surface. The solution of the
problem was developed based on full wave analysis. Numerical results are presented for circular and
square cross-sectional cylindrical surfaces. Comparison with the published data for the radiation from
slotted circular cylinder showed excellent agreement. Other useful results for shielding effectiveness are
furnished.

1. INTRODUCTION

Electromagnetic shielding is needed in many applications, such as the case for electronic equipment, the
room containing sensitive electronic apparatus or preventing electromagnetic waves from propagating
in pre-specified direction. In most applications, one or more openings may exist. Therefore, shielding
effectiveness is an important factor to calculate in order to study the shielding performance. Accordingly,
extensive investigations have been introduced for the calculation of the shielding effectiveness. In
general, the calculation of the shielding effectiveness (SE) of a large metallic enclosure with small
openings is complicated. Therefore, many approximate and exact numerical methods have been
introduced. Highly accurate analytical approximate methods have been only applied on simple
geometries. A simple analytical method was introduced by Robinson et al. based on a transmission
line model [1, 2]. In this method, a rectangular enclosure was modeled by a short-circuited rectangular
waveguide while a coplanar strip transmission line represented the aperture. In [3], an accurate model
to predict the shielding effectiveness of a rectangular enclosure with numerous small apertures was
presented. An appropriate equivalent admittance for the perforated side was suggested amid the free
space and the enclosure, utilizing the traditional waveguide circuit model where the enclosure was
represented by a short-circuited rectangular waveguide. Park and Eom [4] studied the electromagnetic
wave penetration into a rectangular cavity with multiple rectangular apertures. The Fourier transform
and mode matching were used to obtain simultaneous equations for the modal coefficients. The
simultaneous equations were solved to represent the cavity field in series forms, which were suitable
for numerical computations.

In addition to approximate analytical techniques, a number of numerical methods, such as
transmission line modeling method time Domain (TLM-TD) [5], the method of moments (MOM) and
integral equations [6], finite element method (FEM) [7], and finite difference time domain (FDTD)
technique [8–10] have been proposed for the solution of shielding problems. In most of the above
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mentioned methods, the effect of the perforated wall thickness is ignored to simplify the calculation.
However, wall thickness has a significant impact on the SE of the perforated enclosure.

There are analytical approaches such as [11] in which the closed form expressions are derived for
predicting energy leakage through a reflector surface or [12] where the semi-analytical MoM technique is
utilized for several parallel thick plates with apertures. Radiation from a dielectric-loaded multi-slotted
cylinder with thickness illuminated by electric or magnetic line source is formulated by using radial
mode matching technique [13, 14]. The radiated and guided fields are represented in terms of an infinite
series of radial modes. By applying the appropriate boundary conditions, the coefficients of radiated
and guided fields are obtained.

In this paper, we investigate the shielding effectiveness of an infinitely long cylindrical enclosure of
any cross-section simulated by metallic strips coated with dielectric material. A line source is placed
inside the simulated cylindrical surface which illuminates the N dielectric coated conducting strips.
Exact solution based on full wave analysis is developed to obtain the scattered field outside the simulated
cylindrical surface. Fields outside the cylindrical surface are represented in terms of infinite series of
Mathieu functions [15]. Multiple interactions of electromagnetic waves among the dielectric coated
conducting cylinders are considered [16, 17]. The shielding effectiveness is then calculated at a far point
as the ratio between the far fields of a line source in the presence of the simulated surface and in the
absence of the surface. Numerical examples for circular and rectangular cross-sectional surfaces are
presented.

2. FORMULATION OF THE PROBLEM

Figure 1 shows the cross section of a line source of intensity Io placed at (ρo, φo) with respect to the
global coordinate system (x, y, z). Cross sections of N dielectric coated conducting strips, of infinite
length with their axes parallel to the z-axis, are placed on a trajectory of an arbitrary cross-sectional
cylindrical surface around the line source. The ith conducting strip has a width 2di and coated with
a dielectric substance of permittivity εi. The dielectric coating forms an elliptical structure. The focal
length of the outer surface of the ith strip dielectric coating is equal to the conducting strip width while
its semi-major axis and semi-minor axis are respectively denoted by ai and bi. The center of the ith
dielectric coated strip is located at (ri, ψi) with respect to the global coordinate system. The ith coated
strip is inclined by an angle βi with respect to the x-axis. In addition to the global coordinate system,
N coordinate systems are defined at the coated strip centers such that the cross-sectional plane of the
ith strip lies in the xi-yi plane.

Figure 1. Geometry of the problem.

Consider a line source of intensity Io placed at (ρ0, φ0) with respect to the global coordinates.
The incident electric field by the line source is given by:

Eincz =
Ω
4
H

(1)
0 (k0 |ρ− ρ0|) (1)
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where Ω = −k2
0Io
ωε = −koηoIo. The z-polarized incident wave, with ejωt time dependence, is incident

on the N dielectric coated strips. The z-component of the electric field due to the line source can be
expanded in terms of Mathieu functions as:

Eincz = Ω

[ ∞∑
m=0

Sem (h, η0)

N
(e)
m (h)

Sem (h, η)

{
Jem (h, ζ0)He

(1)
m (h, ζ) u > u0

Jem (h, ζ)He(1)m (h, ζ0) u < u0

+
Som (h, η0)
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(o)
m (h)
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Jom (h, ζ)Ho(1)m (h, ζ0) u < u0
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(2)

where,
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− x′20
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⎤
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2

, η0 =
x′0
ζ0d

, x′0 = ρ0 cosφ0, y′0 = ρ0 sinφ0 (3)

Jen(h, ζ) and Jon(h, ζ) are respectively the even and odd modified Mathieu functions of the first kind
and order n(He(1)n (h, ζ) = Jen(h, ζ) + jNen(h, ζ)). Also, Sen(h, η) and Son(h, η) are respectively the
even and odd angular Mathieu functions of order n. N (e)

n (h) and N (o)
n (h) are normalized functions. The

Mathieu functions arguments are hi = kodi, ζi = cosh ui and ηi = cos vi, where ui and vi are elliptical
cylindrical coordinates defined by:

xi = dicoshui cos vi, yi = dicoshui sin vi (4)

The line source electric field can also be expressed in terms of (ρi, φi) of the local coordinates of the ith
dielectric coated conducting strip as:

Einczi = Ω

[ ∞∑
m=0

Sem (h, η0i)
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where

ρi =
√
ρ2

0 + r2i − 2ρ0ri cos(φ0 − ψi) (6)

φi = 90 + ψi − βi − αi (7)
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(9)

η0i =
x′i
ζ0id

, x′i = ρi cosφi, y′i = ρi sinφi (10)

The scattered electric field from the ith coated strip can be expressed in terms of the local
coordinates at the center of each coated strip. Region (I) lies inside the dielectric coating while region
(II) lies outside the dielectric coating. The scattered field from the ith strip in region (I) is given by:

E(I)
zi

= Ω
∞∑
n=0

A(i)
n

{
Jen (Hi, ζi) − Jen (Hi, 1)

Ne
(e)
n (Hi, 1)

Nen (Hi, ζi)

}
Sen (Hi, ηi) (11)

where Hi = kidi and ki = ko
√
μriεri . A

(i)
n are unknown coefficients to be calculated from the boundary

conditions. The boundary condition of the vanishing tangential component of the electric field on the
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conducting strip surface is satisfied in Eq. (11). The scattered field from the ith strip in region (II) is
given by:

E(II)
zi

= Ω
∞∑
n=0

B(i)
n He(1)n (hiζi)Sen (hi, ηi) (12)

B
(i)
n are unknown coefficients to be calculated from the boundary conditions of homogenous tangential

components of electric and magnetic fields at the surface of the dielectric coatings, i.e.,

Einczi
+

N∑
j=1

E(II)
zj

=E(I)
zi

on dielectric coating of ith element (13)

H inc
zi

+
N∑
j=1

H(II)
zj

=H(I)
zi

on dielectric coating of ith element (14)

In order to apply the above boundary conditions, one has to transfer the electric and magnetic field
expressions from one coordinate system to the other. This can be done using the addition theorem of
the Mathieu functions, namely

Hem (aq, ζq)Sem (aq, ηq) =
∞∑
n=0
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+
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where
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εi (j)
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And

Bei,p = H
(1)
p−i (kslq) cos (pψlq − iψql) + (−1)iH(1)

p+i (kslq) cos (pψlq + iψql) (18)

ψik = tan−1

[
yk − yi
xk − xi

]
− βi (19)

Sik =
√

(xi − xk)
2 + (yi − yk)

2 (20)

Employing Eq. (15) in Eq. (12)

E(II)
zj

= Ω
∞∑
n=0

B(j)
n

[ ∞∑
k=0

Uk,n (i, j) Jek (hi, ζi)Sek (hi, ηi)

+
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]
(21)

Applying the boundary condition in Eq. (13) and multiplying both sides of the resulting equation by
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Sem(Hi, ηi) then integrating over vi from 0 to 2π, one obtains:
∞∑
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where

Mn,m (hi,Hi) =
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The magnetic field component Hv can be obtained from:

Hv =
−jk
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√
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(24)

Applying the boundary condition in Eq. (14), one obtains:
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where the prime indicates the derivative with respect to u.
Again, multiplying both sides of Equation (25) by Sem(Hi, ηi) and integrating over vi from 0 to

2π, one obtains:
∞∑
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From Eqs. (22) and (26), one can obtain
∞∑
n=0
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N
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where
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Equation (27) must be applied on all elements from i = 1 to i = N , and it can then be written in a
matrix form, i.e., ⎡

⎢⎢⎢⎢⎢⎣
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⎥⎥⎥⎥⎥⎦
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n
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n

·
·
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n
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where
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∞∑
n=0
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N
(e)
n (h)

{
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−Je′n (h, ζi)Xm (Hi)
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{
Xm (Hi)He(1)

′
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Cijm,n =
∞∑
k=0
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Once the unknown coefficients are calculated, the scattered field may be obtained via the relation:

E(s)
z = Ω

N∑
j=1

∞∑
n=0

B(j)
n He(1)n (hj , ζj)Sen (hj , ηj) (34)

Employing the asymptotic equation of the Mathieu function for the far field, namely

He(1)n (hj , ζj) =
1√
hζj

ej(hjζj−( 2n+1
4 )π) (35)

one obtains

E(s)
z = Ω

N∑
j=1

∞∑
n=0

B(j)
n

1√
hjζj

ej(hjζj−( 2n+1
4 )π)Sen (hj , ηj) (36)

and for large hjζj it can be represented in terms of circular cylindrical coordinates (hjζj = k0ρj).
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For far field ρj = ρ− rjcos(φ− ψj), thus

E(s)
z = Ω

ejk0ρ√
k0ρ

e−j
π
4

N∑
j=1

e−jk0rj cos(φ−ψj)
∞∑
n=0

(−j)nB(j)
n Sen (hj , cosφj) (37)

Also, the incident electric field can be calculated at a far point by employing the following asymptotic
equation

H(1)
m (koρ) =

1√
koρ

e
j
(
koρ−

(
(2m+1)

4

)
π
)

(38)

Employing Eq. (38) in Eq. (1), one obtains

Eincz =
Ω
4

1√
k0 |ρ− ρ0|

ej(k0|ρ−ρ0|−(π
4
)) (39)

Since for the far field ρ� ρ0, thus

Eincz =
Ω
4
ejk0ρ√
k0ρ

e−j(k0ρ0 cosφ0+ π
4
) (40)

Shielding effectiveness is defined as

SE(φ) = = −20 log

∣∣∣∣∣E
(s)
z (far field)

Eincz (far field)

∣∣∣∣∣
= −20 log

∣∣∣∣∣∣4ejk0ρ0 cosφ0

N∑
j=1

e−jk0rj cos(φ−ψj)
∞∑
n=0

(−j)nB(j)
n Sen (hj , cosφj)

∣∣∣∣∣∣ (41)

3. RESULTS AND DISCUSSION

A computer program developed to calculate the shielding effectiveness of a closed cylindrical surface
is simulated by N dielectric coated conducting strips. To check the accuracy of our program, the
special case of the radiated field versus frequency through a slotted circular cylinder with the electric
line current at cylinder center is considered. Results of this special case have been published by Lee
el al. [13]. The radius of the circular cylinder b = 1 m and the sectoral angle of the slot is 60◦. The
cylindrical surface is simulated by 20 conducting strips, and each has a width of 0.2 m. Fig. 2 illustrates
the radiated electric field pattern based on our calculations which is compared with the published data
in [13]. Excellent agreement between our work and the published work is found as can be seen from
Fig. 2, which gives us confidence in our calculations.

The first case we present is for the calculation of the shielding effectiveness of a closed circular
cross-sectional cylindrical surface of radius 1λ0 simulated by 20 dielectric coated conducting strips. The
electric line source placed at different positions inside the cylinder is shown in Fig. 3. The geometrical
parameters are d = 0.1λ0, a = 0.11λ0 and εr = 2.3. As one can see from Fig. 3, shielding effectiveness
pattern will be more directive in the direction of larger off-center displacement of the electric line source
from the cylindrical surface axis. Shielding effectiveness in this case has a maximum value of 3.6 dB
and minimum value of 1.3 dB. An application of this example may be considered as a shielded room
with sensitive equipment that should be shielded from any outside electromagnetic waves. The results
shown in Figure 3 also show the sensitivity of the shielding effectiveness with respect to the position
inside the shielded room.

The second example presented here is for a shielding effectiveness of square cross-sectional
cylindrical surface, of side length 1.92λ0. The cylindrical surface in this case is simulated by 32 dielectric
coated conducting strips. Shielding effectiveness pattern for this geometry is calculated for three different
dielectric coating thicknesses. Fig. 4, illustrates the shielding effectiveness pattern around the shielding
surface for d = 0.1λ0 and εr = 2.3. As can be seen from Fig. 4, the shielding effectiveness is almost
the same for different dielectric coating thicknesses except that at the square corners it increases with
the thickness of the dielectric coating. The shielding effectiveness around this cylindrical surface varies
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Figure 2. The radiated field versus frequency through slotted circular cylinder with electric line current
at the center and slot angle 60◦.

Figure 3. Shielding effectiveness of a circular
cylindrical surface simulated by 20 dielectric
coating conducting strips.

Figure 4. Shielding effectiveness of a cylindrical
surface of square cross-section simulated by 32
dielectric coating conducting strips of different
coating thickness.

between 2.4 dB and 4 dB. Accordingly, in designing a square shielding room one must choose reasonable
dielectric thickness to increase the shielding effectiveness along the corner directions.

For the third example, we have considered the same geometrical parameters of the simulated square
cross-sectional surface. However, shielding effectiveness was calculated for three different dielectric
permittivities. Fig. 5 shows the shielding effectiveness pattern around the shielding surface for d = 0.1λ0

and a = 0.11. As can be seen from Fig. 5, the shielding effectiveness is almost the same for different
dielectric coating permittivities except that at the square corners it increases with the increase of the
dielectric permittivity. The shielding effectiveness around this cylindrical surface varies between 2.5 dB
and 3.8 dB. Shielding effectiveness pattern is rarely calculated in similar studies. The results presented
so far have considered a single frequency, and in order to see the effect of the frequency on the shielding
effectiveness the following example is considered.
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Figure 5. Shielding effectiveness of a cylindrical
surface of square cross-section simulated by 32
dielectric coating conducting strips of different εr.

Figure 6. Shielding effectiveness of circular
cylindrical surface versus frequency.

Finally, shielding effectiveness of a circular cylindrical surface of radius 1λ0 simulated by 20
dielectric coated conducting strips of d = 0.1λ0 and a = 0.11λ0 is calculated at different frequencies as
shown in Fig. 6. Two cases are presented in Fig. 6. The first is for εr = 1 while the second is for εr = 2.3.
As can be noticed from Fig. 6, the shielding effectiveness is increased as the frequency increases. In
addition, in both cases there are many frequencies at which resonance occurs corresponding to different
modes inside the circular waveguide. For the case of simulation with conducting strips (εr = 1),
resonance frequencies occur at 114.82 MHz, 263.56 MHz, 413.18 MHz, 563 MHz, 712.9 MHz, 862.82 MHz,
corresponding to TM01, TM02, TM03, TM04, TM05, and TM06, respectively. The importance of this
result lies in predicting resonance frequencies in order to avoid them when this shielding is used.

4. CONCLUSION

Studying the shielding effectiveness of a cylindrical surface by N dielectric coated conducing strips is
achieved. Shielding a room can be done by placing conducting strips in the trajectory to cylindrical
cross section. Two major examples are presented here. The first is for a circular cylindrical surface
while the second is for a square cross-sectional cylindrical surface. In both cases, shielding effectiveness
pattern outside the shielding surface can be calculated and optimized to any desired value. In addition,
this study shows that shielding effectiveness swings from very low value to very high value at TM0n

cutoff frequencies of circular cross-sectional cylindrical surface. Therefore, for room shielding resonance
frequencies must be avoided.
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