Vol. 168
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-08-30
Second-Order Nonlinear Susceptibility Enhancement in Gallium Nitride Nanowires (Invited)
By
Progress In Electromagnetics Research, Vol. 168, 25-30, 2020
Abstract
We report the second-harmonic generation (SHG) from single GaN nanowire. The diameter of the GaN nanowire varies from 150 to 400 nm. We present a model for the SHG process in the GaN nanowire; the analysis shows quantitatively that the SHG is dominated by its surface area. The effective second order nonlinear optical susceptibility (χ(2)eff) increases as the diameter of the GaN nanowire decreases. For 150-nm diameter GaN nanowire, χ(2)eff reaches 136 pm/V.
Citation
Kangwei Wang, Haoliang Qian, Zhaowei Liu, and Paul K. L. Yu, "Second-Order Nonlinear Susceptibility Enhancement in Gallium Nitride Nanowires (Invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
doi:10.2528/PIER20072201
References

1. Pantazis, P., J. Maloney, D. Wu, and S. E. Fraser, "Second Harmonic Generating (SHG) nanoprobes for in vivo imaging," Proceedings of the National Academy of Sciences, Vol. 107, 14535-14540, 2010.
doi:10.1073/pnas.1004748107

2. Boyd, R. W., Nonlinear Optics, 3rd Ed., Academic Press, 2008.

3. Wooten, E. L., et al., "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron., Vol. 6, 69-82, 2000.
doi:10.1109/2944.826874

4. Jacobsen, R. S., et al., "Strained silicon as a new electro-optic material," Nature, Vol. 441, 199-202, 2006.
doi:10.1038/nature04706

5. Puckett, M. W., et al., "Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: Analysis and experimental validation," Opt. Lett., Vol. 39, 1693-1696, 2014.
doi:10.1364/OL.39.001693

6. Shi, Y., et al., "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science, Vol. 288, 119-122, 2000.
doi:10.1126/science.288.5463.119

7. Alloatti, L., et al., "Second-order nonlinear optical metamaterials: ABC-type nanolaminates," Appl. Phys. Lett., Vol. 107, 121903, 2015.
doi:10.1063/1.4931492

8. Novotny, C. J., C. T. DeRose, R. A. Norwood, and P. K. L. Yu, "Linear electrooptic coefficient of InP nanowires," Nano Lett., Vol. 8, 1020-1025, 2008.
doi:10.1021/nl072688k

9. Bautista, G., et al., "Second-harmonic generation imaging of semiconductor nanowires with focused vector beams," Nano Lett., Vol. 15, 1564-1569, 2015.
doi:10.1021/nl503984b

10. Sanatinia, R., M. Swillo, and S. Anand, "Surface second-harmonic generation from vertical GaP nanopillars," Nano Lett., Vol. 12, 820-826, 2012.
doi:10.1021/nl203866y

11. Sanatinia, R., S. Anand, and M. Swillo, "Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides," Opt. Express, Vol. 23, 756-764, 2015.
doi:10.1364/OE.23.000756

12. Sanatinia, R., S. Anand, and M. Swillo, "Modal engineering of second-harmonic generation in single GaP nanopillars," Nano Lett., Vol. 14, 5376-5381, 2014.
doi:10.1021/nl502521y

13. Hu, H., et al., "Precise determination of the crystallographic orientations in single ZnS nanowires by second-harmonic generation microscopy," Nano Lett., Vol. 15, 3351-3357, 2015.
doi:10.1021/acs.nanolett.5b00607

14. Liu, W., et al., "Laterally emitted surface second harmonic generation in a single ZnTe nanowire," Nano Lett., Vol. 13, 4224-4229, 2013.
doi:10.1021/nl401921s

15. Novotny, C. J. and P. K. L. Yu, "Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition," Appl. Phys. Lett., Vol. 87, 203111, 2005.
doi:10.1063/1.2131182

16. Sutherland, R. L., Handbook of Nonlinear Optics, CRC Press, 2003.
doi:10.1201/9780203912539

17. Long, X. C., et al., "GaN linear electro-optic effect," Appl. Phys. Lett., Vol. 67, 1349-1351, 1995.
doi:10.1063/1.115547

18. Miragliotta, J., D. Wickenden, T. Kistenmacher, and W. Bryden, "Linear-and nonlinear-optical properties of GaN thin films," JOSA B, Vol. 10, 1447-1456, 1993.
doi:10.1364/JOSAB.10.001447

19. Xiong, C., et al., "Integrated GaN photonic circuits on silicon (100) for second harmonic generation," Opt. Express, Vol. 19, 10462-10470, 2011.
doi:10.1364/OE.19.010462

20. Abe, M., et al., "Accurate measurement of quadratic nonlinear-optical coefficients of gallium nitride," J. Opt. Soc. Am. B, Vol. 27, 2026-2034, 2010.
doi:10.1364/JOSAB.27.002026

21. Yu, E. T., et al., "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 17, 1742-1749, 1999.
doi:10.1116/1.590818

22. Bernardini, F., V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B, Vol. 56, R10024-R10027, 1997.
doi:10.1103/PhysRevB.56.R10024

23. Shen, Y. R., "Surface properties probed by second-harmonic and sum-frequency generation," Nature, Vol. 337, 519-525, 1989.
doi:10.1038/337519a0

24. Barker, A. S. and M. Ilegems, "Infrared lattice vibrations and free-electron dispersion in GaN," Phys. Rev. B, Vol. 7, 743-750, 1973.
doi:10.1103/PhysRevB.7.743