Vol. 168
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-08-22
Superscattering of Light in Refractive-Index Near-Zero Environments
By
Progress In Electromagnetics Research, Vol. 168, 15-23, 2020
Abstract
Enhancing the scattering of light from subwavelength structures is of both fundamental and practical significance. While the scattering cross section from each channel cannot exceed the single-channel limit, it is recently reported that the total cross section can far exceed this limit if one overlaps the contribution from many channels. Such a phenomenon about enhancing the scattering from subwavelength structures in free space is denoted as the superscattering in some literature. However, the scatterer in practical scenarios is not always in free space but may be embedded in environments with non-unity refractive index n. The influence of environments on the superscattering remains elusive. Here the superscattering from subwavelength structures in the isotropic environment with near-zero index are theoretically investigated. Importantly, a smaller n can lead to a larger total cross section for superscattering. The underlying mechanism is that a smaller n can give rise to a larger single-channel limit. Our work thus indicates that the scattering from subwavelength structures can be further enhanced if one simultaneously maximizes the single-channel limit and the contribution from many channels.
Citation
Chan Wang, Chao Qian, Hao Hu, Lian Shen, Zuo Jia Wang, Huaping Wang, Zhiwei Xu, Baile Zhang, Hongsheng Chen, and Xiao Lin, "Superscattering of Light in Refractive-Index Near-Zero Environments," Progress In Electromagnetics Research, Vol. 168, 15-23, 2020.
doi:10.2528/PIER20070401
References

1. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, F. J. Garcıa de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett., Vol. 90, 057401, 2003.
doi:10.1103/PhysRevLett.90.057401

2. Tribelsky, M. I. and B. S. Luk’Yanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
doi:10.1103/PhysRevLett.97.263902

3. Tang, L., S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photon., Vol. 2, 226-229, 2008.
doi:10.1038/nphoton.2008.30

4. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, 2009.
doi:10.1103/PhysRevLett.102.233901

5. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater., Vol. 9, 205-213, 2010.
doi:10.1038/nmat2629

6. Liu, N., M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, "Nanoantenna-enhanced gas sensing in a single tailored nanofocus," Nat. Mater., Vol. 10, 631-636, 2011.
doi:10.1038/nmat3029

7. Yao, J., X. Yang, X. Yin, G. Bartal, and X. Zhang, "Three-dimensional nanometer-scale optical cavities of indefinite medium," PNAS, Vol. 108, 11327-11331, 2011.
doi:10.1073/pnas.1104418108

8. Chen, P.-Y. and A. Alu, "Atomically thin surface cloak using graphene monolayers," ACS Nano, Vol. 5, 5855-5863, 2011.
doi:10.1021/nn201622e

9. Staude, I., A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, and I. Brener, "Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks," ACS Nano, Vol. 7, 7824-7832, 2013.
doi:10.1021/nn402736f

10. Lin, X., Y. Yang, N. Rivera, J. J. Lopez, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljacic, "All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures," PNAS, Vol. 114, 6717-6721, 2017.

11. Lin, X., S. Easo, Y. Shen, H. Chen, B. Zhang, J. D. Joannopoulos, M. Soljacic, and I. Kaminer, "Controlling Cherenkov angles with resonance transition radiation," Nat. Phys., Vol. 14, 816-821, 2018.
doi:10.1038/s41567-018-0138-4

12. Shi, X., X. Lin, I. Kaminer, F. Gao, Z. Yang, J. D. Joannopoulos, M. Soljacic, and B. Zhang, "Superlight inverse Doppler effect," Nat. Phys., Vol. 14, 1001-1005, 2018.
doi:10.1038/s41567-018-0209-6

13. Shen, L., X. Lin, M. Y. Shalaginov, T. Low, X. Zhang, B. Zhang, and H. Chen, "Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials," Appl. Phys. Rev., Vol. 7, 021403, 2020.
doi:10.1063/1.5141275

14. Qian, C., X. Lin, X. Lin, J. Xu, Y. Sun, E. Li, B. Zhang, and H. Chen, "Performing optical logic operations by a diffractive neural network," Light Sci. Appl., Vol. 9, 59, 2020.
doi:10.1038/s41377-020-0303-2

15. Hu, H., X. Lin, J. Zhang, D. Liu, P. Genevet, B. Zhang, and Y. Luo, "Nonlocality induced Cherenkov threshold," Laser Photonics Rev., 2000149, 2020.
doi:10.1002/lpor.202000149

16. Ruan, Z. and S. Fan, "Superscattering of light from subwavelength nanostructures," Phys. Rev. Lett., Vol. 105, 013901, 2010.
doi:10.1103/PhysRevLett.105.013901

17. Ruan, Z. and S. Fan, "Design of subwavelength superscattering nanospheres," Appl. Phys. Lett., Vol. 98, 043101, 2011.
doi:10.1063/1.3536475

18. Miller, O. D., C. W. Hsu, M. H. Reid, W. Qiu, B. G. De Lacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to extinction by metallic nanoparticles," Phys. Rev. Lett., Vol. 112, 123903, 2014.
doi:10.1103/PhysRevLett.112.123903

19. Yang, Y., O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljacic, "Low-loss plasmonic dielectric nanoresonators," Nano Lett., Vol. 17, 3238-3245, 2017.
doi:10.1021/acs.nanolett.7b00852

20. Yu, Z., G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett., Vol. 89, 151116, 2006.
doi:10.1063/1.2360896

21. Hao, J., W. Yan, and M. Qiu, "Super-reflection and cloaking based on zero index metamaterial," Appl. Phys. Lett., Vol. 96, 101109, 2010.
doi:10.1063/1.3359428

22. Mirzaei, A., I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, "Cloaking and enhanced scattering of core-shell plasmonic nanowires," Opt. Express, Vol. 21, 10454-10459, 2013.
doi:10.1364/OE.21.010454

23. Coenen, T., F. B. Arango, A. F. Koenderink, and A. Polman, "Directional emission from a single plasmonic scatterer," Nat. Commun., Vol. 5, 3250, 2014.
doi:10.1038/ncomms4250

24. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.
doi:10.1038/nmat3839

25. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials," Nat. Photon., Vol. 7, 948-957, 2013.
doi:10.1038/nphoton.2013.243

26. Li, R., B. Zheng, X. Lin, R. Hao, S. Lin, W. Yin, E. Li, and H. Chen, "Design of ultracompact graphene-based superscatterers," IEEE J. Sel. Top. Quant., Vol. 23, 4600208, 2017.

27. Qian, C., X. Lin, Y. Yang, F. Gao, Y. Shen, J. Lopez, I. Kaminer, B. Zhang, E. Li, M. Soljacic, and H. Chen, "Multifrequency superscattering from subwavelength hyperbolic structures," ACS Photon., Vol. 5, 1506-1511, 2018.
doi:10.1021/acsphotonics.7b01534

28. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 1998.
doi:10.1002/9783527618156

29. Brolo, A. G., E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett., Vol. 4, 2015-2018, 2004.
doi:10.1021/nl048818w

30. Rakich, P. T., C. Reinke, R. Camacho, P. Davids, and Z. Wang, "Giant enhancement of stimulated Brillouin scattering in the subwavelength limit," Phys. Rev. X, Vol. 2, 011008, 2012.

31. Foot, C. J., Atomic Physics, Oxford University Press, 2005.

32. Verslegers, L., Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, "From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures," Phys. Rev. Lett., Vol. 108, 083902, 2012.
doi:10.1103/PhysRevLett.108.083902

33. Zhou, M., L. Shi, J. Zi, and Z. Yu, "Extraordinarily large optical cross section for localized single nanoresonator," Phys. Rev. Lett., Vol. 115, 023903, 2015.
doi:10.1103/PhysRevLett.115.023903

34. Qian, C., X. Lin, Y. Yang, X. Xiong, H. Wang, E. Li, I. Kaminer, B. Zhang, and H. Chen, "Experimental observation of superscattering," Phys. Rev. Lett., Vol. 122, 063901, 2019.
doi:10.1103/PhysRevLett.122.063901

35. Kinkhabwala, A., Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, "Large singlemolecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photon., Vol. 3, 654-657, 2009.
doi:10.1038/nphoton.2009.187

36. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, 2006.
doi:10.1103/PhysRevLett.97.157403

37. Edwards, B., A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, 033903, 2008.
doi:10.1103/PhysRevLett.100.033903

38. Huang, X., Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials," Nat. Mater., Vol. 10, 582-586, 2011.
doi:10.1038/nmat3030

39. Kocaman, S., M. Aras, P. Hsieh, J. McMillan, C. Biris, N. Panoiu, M. Yu, D. Kwong, A. Stein, and C. Wong, "Zero phase delay in negative-refractive-index photonic crystal superlattices," Nat. Photon., Vol. 5, 499-505, 2011.
doi:10.1038/nphoton.2011.129

40. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, 286-287, 2013.
doi:10.1126/science.1235589

41. Lu, L., H. Gao, and Z. Wang, "Topological one-way fiber of second Chern number," Nat. Commun., Vol. 9, 5384, 2018.
doi:10.1038/s41467-018-07817-3

42. Zhou, M., L. Ying, L. Lu, L. Shi, J. Zi, and Z. Yu, "Electromagnetic scattering laws in Weyl systems," Nat. Commun., Vol. 8, 1388, 2017.
doi:10.1038/s41467-017-01533-0

43. Wang, C., H. Wang, L. Shen, R. Abdi-Ghaleh, M. Y. Musa, Z. Xu, and B. Zheng, "Structure-induced hyperbolic dispersion in waveguides," IEEE Trans. Antennas & Propagation, Vol. 67, 5463-5468, 2019.
doi:10.1109/TAP.2019.2916731

44. Liberal, I., A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, "Photonic doping of epsilon-near-zero media," Science, Vol. 355, 1058-1062, 2017.
doi:10.1126/science.aal2672

45. Zhang, Y., Y. Luo, J. B. Pendry, and B. Zhang, "Transformation-invariant metamaterials," Phys. Rev. Lett., Vol. 123, 067701, 2019.
doi:10.1103/PhysRevLett.123.067701

46. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, 023903, 2008.
doi:10.1103/PhysRevLett.100.023903

47. Moitra, P., Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Realization of an all-dielectric zero-index optical metamaterial," Nat. Photon., Vol. 7, 791-795, 2013.
doi:10.1038/nphoton.2013.214

48. Li, Y., S. Kita, P. Munoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, and E. Mazur, "On-chip zero-index metamaterials," Nat. Photon., Vol. 9, 738-742, 2015.
doi:10.1038/nphoton.2015.198

49. Chu, H., Q. Li, B. Liu, J. Luo, S. Sun, Z. Hang, L. Zhou, and Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials," Light Sci. Appl., Vol. 7, 50, 2018.
doi:10.1038/s41377-018-0052-7

50. Caldwell, J. D., A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, "Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride," Nat. Commun., Vol. 5, 5221, 2014.
doi:10.1038/ncomms6221

51. Woessner, A., M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, "Highly confined low-loss plasmons in graphene-boron nitride heterostructures," Nat. Mater., Vol. 14, 421-425, 2015.
doi:10.1038/nmat4169

52. Ordal, M. A., R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Optics, Vol. 24, 4493-4499, 1985.
doi:10.1364/AO.24.004493