Vol. 96
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-07
Adaptive Antijamming Based on Space-Time 2-d Sparse Array for GNSS Receivers
By
Progress In Electromagnetics Research M, Vol. 96, 89-97, 2020
Abstract
Space-time adaptive antijamming problem has received significant attention recently for global navigation satellite system (GNSS). It can jointly utilize spatial filters and temporal filters to suppress interference signals. However, most of the works on space-time antijamming problem presented in the literature require a space-time two-dimension (2-D) array with multiple antennas and delay taps. In this paper, an effective adaptive antijamming method based on space-time a 2-D sparse array is proposed. The maximum array gain is utilized to construct a space-time 2-D sparse array. The space-time antijamming weight vector is given by minimizing the 2-D sparse array output power. Compared with the previous works, the presented method can have better antijamming performance than a space-time 2-D uniform array. Simulation results verify the effectiveness and feasibility of the proposed method.
Citation
Ruiyan Du, Fulai Liu, Kai Tang, and Hui Song, "Adaptive Antijamming Based on Space-Time 2-d Sparse Array for GNSS Receivers," Progress In Electromagnetics Research M, Vol. 96, 89-97, 2020.
doi:10.2528/PIERM20070302
References

1. Souden, M., J. Benesty, and S. Affes, "A study of the LCMV and MVDR noise reduction filters," IEEE Transactions on Signal Processing, Vol. 58, No. 9, 4925-4935, 2010.
doi:10.1109/TSP.2010.2051803

2. Huang, Y. W., M. K. Zhou, and S. A. Vorobyov, "New designs on MVDR robust adaptive beamforming based on optimal steering vector estimation," IEEE Transactions on Signal Processing, Vol. 67, No. 14, 3624-3638, 2019.
doi:10.1109/TSP.2019.2918997

3. Saeed, M. and K. Osman, "Adaptive beamforming based on theoretical interference-plus-noise covariance and direction-of-arrival estimation," IET Signal Processing, Vol. 12, No. 10, 819-825, 2018.

4. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

5. Chen, F. Q., J. W. Nie, B. Y. Li, and F. X. Wang, "Distortionless space-time adaptive processor for global navigation satellite system receiver," Electronics Letters, Vol. 51, No. 25, 2138-2139, 2015.
doi:10.1049/el.2015.2832

6. Lu, Z. K., J. W. Nie, F. Q. Chen, H. M. Chen, and G. Ou, "Adaptive time taps of STAP under channel mismatch for GNSS antenna arrays," IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 11, 2813-2824, 2017.
doi:10.1109/TIM.2017.2728420

7. Saeed, D., J. Ali, B. Ali, and L. Grard, "GNSS space-time interference mitigation and attitude determination in the presence of interference signals," Sensors, Vol. 15, No. 6, 12180-12204, 2015.
doi:10.3390/s150612180

8. Dai, X. Z., J. W. Nie, F. Q. Chen, and G. Ou, "Distortionless space-time adaptive processor based on MVDR beamformer for GNSS receiver," IET Radar Sonar & Navigation, Vol. 11, No. 10, 1488-1494, 2017.
doi:10.1049/iet-rsn.2017.0168

9. Liu, F., R. Du, and X. Bai, "A virtual space-time adaptive beamforming method for space-time antijamming," Progress In Electromagnetics Research M, Vol. 58, 183-191, 2017.
doi:10.2528/PIERM17050304

10. Xu, J. W., G. S. Liao, S. Q. Zhu, and L. Huang, "Response vector constrained robust LCMV beamforming based on semidefinite programming," IEEE Transactions on Signal Processing, Vol. 63, No. 21, 5720-5732, 2015.
doi:10.1109/TSP.2015.2460221

11. Zheng, Z., W. Q. Wang, Y. Y. Kong, and Y. D. Zhang, "MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect," IEEE Transactions on Signal Processing, Vol. 67, No. 7, 1728-1741, 2019.
doi:10.1109/TSP.2019.2897954

12. Muran, G., Y. D. Zhang, and T. Chen, "DOA estimation using compressed sparse array," IEEE Transactions on Signal Processing, Vol. 66, No. 15, 4133-4146, 2018.
doi:10.1109/TSP.2018.2847645

13. Hu, B., X. C. Wu, X. Zhang, Q. Yang, and W. B. Deng, "Adaptive beamforming for sparse array based on semi-definite programming," IEEE Access, Vol. 6, 64525-64532, 2018.
doi:10.1109/ACCESS.2018.2878153

14. Hawes, M. B. and W. Liu, "Sparse array design for wideband beamforming with reduced complexity in tapped delay-lines," IEEE/ACM Transactions on Audio Speech and Language Processing, Vol. 22, No. 88, 1236-1247, 2014.
doi:10.1109/TASLP.2014.2327298

15. Amin, M. G., X. R. Wang, Y. D. Zhang, and F. Ahmad, "Sparse arrays and sampling for interference mitigation and DOA estimation in GNSS," Proceedings of the IEEE, Vol. 104, No. 6, 1302-1317, 2016.
doi:10.1109/JPROC.2016.2531582

16. Donelli, M., T. Moriyama, and M. Manekiya, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
doi:10.2528/PIERC18012004

17. Wang, X. R., M. Amin, and X. Cao, "Analysis and design of optimum sparse array configurations for adaptive beamforming," IEEE Transactions on Signal Processing, Vol. 66, No. 2, 340-351, 2017.
doi:10.1109/TSP.2017.2760279

18. Wang, X. R., M. Amin, and X. H. Wang, "Robust sparse array design for adaptive beamforming against DOA mismatch," Signal Processing, Vol. 146, 41-49, 2018.
doi:10.1016/j.sigpro.2017.12.018

19. Meyer, C., "Matrix analysis and applied linear algebra," Society for Industrial and Applied Mathematics, 2000.

20. Horst, R. and P. M. Pardalos, Introduction to Global Optimization, Springer-Verlag New York, Inc., 2002.

21. Fazel, M., H. Hindi, and S. P. Boyd, "Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices," American Control Conference, Vol. 3, 2156-2162, 2003.

22. Grant, M., CVX: Matlab software for disciplined convex programming, Version 1.21, 2008.