
Progress In Electromagnetics Research M, Vol. 96, 89–97, 2020

Adaptive Antijamming Based on Space-time 2-D Sparse Array
for GNSS Receivers
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Abstract—Space-time adaptive antijamming problem has received significant attention recently for
global navigation satellite system (GNSS). It can jointly utilize spatial filters and temporal filters to
suppress interference signals. However, most of the works on space-time antijamming problem presented
in the literature require a space-time two-dimension (2-D) array with multiple antennas and delay taps.
In this paper, an effective adaptive antijamming method based on a space-time 2-D sparse array is
proposed. The maximum array gain is utilized to construct a space-time 2-D sparse array. The space-
time antijamming weight vector is given by minimizing the 2-D sparse array output power. Compared
with the previous works, the presented method can have better antijamming performance than a space-
time 2-D uniform array. Simulation results verify the effectiveness and feasibility of the proposed
method.

1. INTRODUCTION

With the development of the global navigation satellite system (GNSS), location and navigation are
widely applied in military and civilian fields, such as agriculture, aviation, land-vehicle navigation, and
marine-navigation. However, the GNSS receiver is easily disrupted by intentional or unintentional
jamming since the navigation signal is extremely weak when it reaches the ground. Thus, the
antijamming technology has become a key to maintaining the integrity and functionality for GNSS
receivers.

Spatial filter is recognized as a fundamental antijamming method for receiving the satellite signal of
a specific direction while suppressing interference signals of other directions through an antenna array.
The minimum variance distortionless response (MVDR) algorithm is one of the popular approaches for
spatial antijamming. It can minimize the array output power and maintain a distortionless mainlobe
response toward the desired signal. Unfortunately, MVDR beamformer may have unacceptably high
sidelobes, which may lead to significant performance degradation in the event of unexpected interference
signals [1]. A modified MVDR method is proposed, which utilizes a series of constraints to enforce
the direction of arrival (DOA) of the desired signal to be far away from the DOAs of the interfering
signals [2]. Based on projection processing, an effective beamforming technique is given for uniform
linear arrays [3]. The covariance matrix is reconstructed against both the covariance matrix uncertainty
and the signal steering vector mismatch, which can improve the performance of blanket jamming. A
simple and effective spatial filter is proposed for uniform linear arrays [3]. In the presented method,
the covariance matrix is constructed and the desired-signal steering vector is estimated by projection
processing. The antenna structure and geometrical parameters are optimized in [4], and it has excellent
radiating performance and small size. The beam pattern of proposed switched-beam antenna array has
low side-lobe levels and is not sensitive to noise level. It is well known that the spatial degree of freedom
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(DOF) is equal to M − 1 in the case of using an M -element antenna array. The application of above
approaches will be limited when the number of interference signals exceeds the DOF of the antenna array.
Therefore, the space-time adaptive antijamming method is developed to overcome the aforementioned
problem, and several delay taps are placed behind each antenna element, namely, a temporal filtering
is added on the basis of the spatial filtering. Thus, the space-time adaptive antijamming method can
suppress more interference signals owing to the addition of temporal DOF [5–10]. A distortionless space-
time adaptive antijamming method is presented [5], which can not only obtain a higher DOF but also
enhance the gain of GNSS signals. A proportion differentiation algorithm is proposed for space-time
adaptive antijamming [6]. It can achieve excellent performance for interference suppression without
increasing the computational load. In [7], a two-stage antijamming approach is developed, in which the
first stage estimates an interference-free subspace before the acquisition and tracking phases and projects
all received signals into this subspace, and the second stage estimates the array attitude parameters
based on detecting and employing GNSS signals. Through the aforementioned processing, the two-
stage antijamming approach can significantly decrease distortion while maximizing signal-to-noise ratio
(SNR). To achieve higher antijamming performance, a distortionless space-time adaptive processor based
on minimum variance distortionless response (MVDR) beamformer is proposed [8]. It can maintain the
linearity of space-time filter response, when odd number of delay taps is exploited. A virtual space-time
adaptive beamforming is proposed for space-time antijamming [9]. Via temporal smoothing technique, a
virtual space-time two-dimension (2-D) antijamming structure is constructed. It has better antijamming
performance such as lower computational complexity than the antijamming structure without temporal
smoothing. A new robust LCMV beamforming approach is presented and extended to space-time 2-D
adaptive processing for sidelobe and mainlobe optimization problem [10]. In the proposed method,
the robust beamformer is formulated as a nonconvex quadratically constrained quadratic programming
problem. Furthermore, it is transformed into a semidefinite programming problem so that the weight
vector can be effectively solved.

The array feature is critical to improving the the adaptive processing performance. Recently, several
sparse arrays with higher DOFs are proposed to improve the adaptive processing performance with a
reduced number of antennas. For example, nested and coprime arrays have attracted considerable
interest due to their capability of providing increased array aperture, enhanced DOFs, and reduced
mutual coupling effect compared to uniform linear arrays (ULAs) [11]. A compressed sparse array
(CSA) scheme is presented for DOA estimation [12]. By combining the compressive measurement
method and the sparse array together, the CSA has not only a higher number of DOFs but also a
lower system complexity. Via a sparse receiving array, a semi-definite programming-total least squares
(SDP-TLS) method is presented for eliminating the influence of the the gain/phase uncertainties and
the basis mismatch problem [13]. A sparse wideband array design method is addressed for wideband
beamforming problem [14]. A subset of array antennas is selected from a full array by discarding
useless information [15], and it guarantees jamming nulling while declining the cost of hardware and
computational load. A design of an electronically reconfigurable planar antenna array is proposed, in
which discontinuities can be selected by RF switches [16]. It can achieve low cost, limited hardware
complexity, and excellent reconfigurable capabilities. The output maximum signal to interference-plus-
noise ratio (MSINR) criterion is the most essential criterion for adaptive beamforming. Therefore,
optimum array configuration for MVDR adaptive procession is proposed in [17, 18], which designs a
sparse array via giving a number of antennas and offering new insights into adaptive beamforming.

In this paper, an effective space-time adaptive antijamming method based on space-time 2-D sparse
array is developed for GNSS receivers. The rest of the paper is organized as follows. The data model is
introduced in Section 2. Section 3 presents the details of the proposed algorithm. Simulations are given
to demonstrate the performance of the proposed method in Section 4. Section 5 concludes the paper.

2. DATA MODE

Consider that GNSS receiver with a ULA which consists of M antennas. Each antenna is equally spaced
with P taps, and the space-time filter structure is given in Figure 1.

Assume that there are an interesting satellite signal s(t) and q narrow-band interference signals
jk(t) (k = 1, · · · , q) impacting on the ULA. Then, the MP × 1 received signals x(t) at time instant t
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Figure 1. Space-time filter structure.

can be expressed as [8]

x(t) = a0s(t) +
q∑

k=1

akjk(t) + n(t) (1)

where x(t) = [x11, x12, · · · , x1P , · · · , xM1, · · · , xMP ]T , s(t) and jk(t){k = 1, 2, · · · , q} represent satellite
signal and the kth interference signal, respectively. n(t) denotes the white Gaussian noise of the space-
time filter structure. a0 and ak{k = 1, 2, · · · , q} represent steering vectors of satellite and interference
signals, respectively, which have the following forms [8]

al = as(θl) ⊗ at(fl) for l = 0, 1, 2, · · · , q

as(θl) = [1, exp{−j2πfld sin(θl)/c}, · · · , exp{−j2πfl(M − 1)d sin(θl)/c}]T
at(fl) = [1, exp{−j2πflτ}, · · · , exp{−j2πfl(P − 1)τ}]T

(2)

where θl and fl denote the DOA and frequency for the lth signal, respectively. τ stands for the delay
time. The superscript (·)T denotes the transpose operation.

The covariance matrix of x(t) can be expressed as
Rx = E

{
x(t)xH(t)

}
= σ2

sa0aH
0 + AjRbAH

j + σ2
nI (3)

where E{·} represents the statistical average operation, and the superscript (·)H denotes the conjugate
transpose. σ2

s = E{s(t)sH (t)} is the power of the interesting satellite signal. Rb = E{j(t)jH(t)}, where
j(t) = [j1(t), j2(t), · · · , jk(t), · · · , jq(t)] indicates q interference signals. Rb is a diagonal matrix whose
kth diagonal element is the power of the kth interference signal for k = 1, 2, · · · , q. The MP ×q steering
vector matrix Aj = [a1,a2, · · · ,ak, · · · ,aq]. σ2

n and I indicate Gaussian noise power and identity matrix,
respectively.

The beamformer output y(t) of the space-time filter can be written as

y(t) = wHx(t) (4)
where w ∈ CMP×1 is the space-time antijamming weight vector.

The mean square power output P0 of the beamformer can be expressed as
Po = E

{
y(t)yH(t)

}
= wHRsw + wHRjw + wHRnw = wHRsw + wHRj+nw (5)

where Rs = σ2
sa0aH

0 denotes the interesting satellite signal covariance matrix. Rj = AjRbAH
j stands

for the covariance matrix of interference signals. Rn = σ2
nI represents the noise covariance matrix.

Rj+n = Rj + Rn = AjRbAH
j + σ2

nI denotes the interference-plus-noise covariance matrix.
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3. ALGORITHM FORMULATION

In this section, an adaptive antijamming algorithm based on space-time 2-D sparse array is described
in detail. Firstly, via the output maximum signal to interference-plus-noise ratio (MSINR) criterion,
a target function is constructed based on the output SINR and the gain of space-time 2-D array.
Secondly, space-time 2-D sparse array configuration is determined by solving selection vectors. Finally,
the closed-form solution of space-time antijamming weight vector is given.

3.1. Space-Time 2-D Array Output SINR and Gain

3.1.1. Array Output SINR

The output SINR of a beamformer can be written as

SINRo(w) =
wHRsw

wHRj+nw
=

σ2
s |wHa0|2

wHRj+nw
(6)

where w is the the space-time 2-D weight vector.
Invoking MVDR beamformer [8], the optimal solution wMVDR of space-time 2-D weight vector can

be expressed as

wMVDR = μR−1
j+na0 =

R−1
j+na0

aH
0 R−1

j+na0

(7)

where the superscript (·)−1 denotes matrix inverse and μ = 1
aH
0 R−1

j+na0
.

Substituting Eq. (7) into Eq. (6), the output SINR with the weight vector wMVDR is given by

SINRo(wMVDR) = SNRiaH
0

(
I +

1
σ2

n

AjRbAH
j

)−1

a0 (8)

where the signal-to-noise ratio SNRi = σ2
s/σ

2
n, in which σ2

s and σ2
n denote the power of interesting

satellite signal and the power of noise, respectively. a0 stands for the steering vector of interesting
satellite signal. Aj and Rb represent the steering matrix and the covariance matrix for the multiple
interference signals, respectively.

Let Ri = I + σ−2
n AjRbAH

j . According to matrix inversion lemma [19], the inverse of the matrix
Ri can be written as R−1

i = I + Aj(AH
j Aj + σ2

nR
−1
b )−1AH

j . Substituting R−1
i into Eq. (8), the output

SINR can be rewritten as

SINRo(wMVDR) = SNRiG = SNRi

[
D − aH

0 Aj(Ro + AH
j Aj)−1AH

j a0

]
(9)

where Ro = σ2
nR

−1
b . The array gain G = [D − aH

0 Aj(Ro + AH
j Aj)−1AH

j a0], in which D = aH
0 a0 with

D being the sum of the numbers of antennas and taps actually used to receive the signals.

3.1.2. Space-Time 2-D Array Gain

Define a selection vector z = (z1, · · · , zMP )T with zk ∈ {0, 1} k = 1, 2, · · · ,MP , where “1” indicates that
the unit is retained, and “0” means elimination. For each selection vector z, there is a corresponding
selection matrix Z = diag(z), and it is easy to know that ZTZ = diag(z). Suppose that the steering
matrix of the input signals can be written as A = [Aj,a0], where Aj = [a1,a2, ...,aq], a0 and
ak, {k = 1, 2, ..., q} are the steering vectors of the satellite and the interference signals, respectively. Via
the selection matrix Z, the steering matrix A of a sparse array can be expressed as A = ZA = Z[Aj ,a0]
and a0 = Za0, Aj = ZAj .

Let Cj = AH
j Aj + Ro, and Cj can be further expressed as

Cj = A
H
j diag(z)Aj + Ro (10)

where Ro = σ2
nR

−1
b .
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Similarly, the matrix C is written as follows

C = A
Hdiag(z)A + R =

[
Cj AH

j diag(z)a0

aH
0 diag(z)Aj aH

0 diag(z)a0

]
(11)

where Cj and aH
0 diag(z)a0 are invertible.

According to partitioned matrix determinant [19], the determinant of C is calculated as follows

|C| =

∣∣∣∣∣ Cj A
H
j diag(z)a0

aH
0 diag(z)Aj aH

0 diag(z)a0

∣∣∣∣∣ = |Cj||D − aH
0 Aj(Ro + AH

j Aj)−1AH
j a0| (12)

where the operation | · | represents the determinant of matrix.
Consequently, the relationship between |C| and |Cj | can be obtained as follows

|C|
|Cj| =

∣∣∣D − aH
0 Aj

(
Ro + AH

j Aj

)−1
AH

j a0

∣∣∣ = G (13)

where G denotes the array gain given by Eq. (9).
From Eqs. (10), (11), and (13), we can get

log G = log
∣∣∣AHdiag(z)A + R

∣∣∣ − log
∣∣∣AH

j diag(z)Aj + Ro

∣∣∣ (14)

where the array gain G is converted into its logarithmic.

3.2. Space-Time 2-D Sparse Array Configuration

In this section, via the array gain given by Eq. (14), an effective space-time 2-D sparse array configuration
is designed.

3.2.1. Antenna Sparse Array Design

Invoking the array gain in Eq. (14), the sparse array design problem can be formulated in terms of
maximizing the logarithm of G,

max
z

log
∣∣∣AHdiag(z)A + R

∣∣∣ − log
∣∣∣AH

j diag(z)Aj + Ro

∣∣∣
s.t.

{
1Tz = K,

0 ≤ z ≤ 1

(15)

where 0 ≤ z ≤ 1 means componentwise, i.e., 0 ≤ zk ≤ 1 for all k.
However, the above objective function belongs to two concave functions [20]. Via the sequential

convex programming (SCP) based on iteratively linearizing the concave function [21], the optimization
problem (15) can be rewritten as

max
z

log
∣∣∣AHdiag(z)A + R

∣∣∣ − ΔgT
1

(
z(k)

)(
z− z(k)

)
s.t.

{
1Tz = K,

0 ≤ z ≤ 1

(16)

where ΔgT
1 (z(k)) = [aH

r,i(A
H
j diag(z(k))Aj +Ro)−1ar,i, i = 1, 2, ...,M ]T is the gradient of concave function

log |AH
j diag(z)Aj + Ro|. ar,i represents the ith column of the matrix A

H
j .

Note that the SCP depends on different initial values z(0). It is necessary to select different initial
values, run multiple times, and ultimately select the maximum operation result of the objective function.
The optimization problem in Eq. (16) can be solved by using the software package CVX embedded in
Matlab [22].
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3.2.2. Tap Sparse Array Design

Based on the antenna sparse array design in Eq. (16), a space-time 2-D array with spatial sparse
configuration can be obtained, if P delay taps are uniformly added to each antenna element. Thus, our
design goal is to choose an appropriate D(D < P ) sparse tap position so that the designed space-time
2-D sparse array can have better performance than other array configurations.

As the antenna position has been determined, the space-time steering vector is redefined as
as,s. The steering vector of the satellite and interference signals can be redefined as a0,s and
ak,s {k = 1, 2, · · · , q}, respectively. Similarly, the steering matrix of the interference signals and input
signals can be written as Aj,s = [a1,s,a2,s, ...,aq,s], As = [Aj,s,a0,s]. Define a tap selection vector
zt = [zi, i = 1, 2, ...,KP ] ∈ {0, 1}KP . In the sparse process, the antenna positions are all set to “1”
in the selection vector, thereby ensuring that only the taps are sparse. The selection vector diagonal
expansion also gets the selection matrix, that is, Zt = diag(zt). The selection matrix is used to obtain
sparse steering vectors and matrix such as a0,s = Zta0,s and Aj,s = ZtAj,s. Similarly, the selection
vector is associated with the array gain, which translates into an optimization problem similar to Eq. (15)
as follows

max
zt

log
∣∣∣AH

s diag(zt)As + R
∣∣∣ − log

∣∣∣AH
j,sdiag(zt)Aj,s + Ro

∣∣∣
s.t.

{
1Tzt = D,

0 ≤ zt ≤ 1

(17)

The solution of the above optimization can refer to Eq. (16). According to the obtained tap selection
vector zt, the final sparse array configuration can be obtained.

3.3. Solution for Space-Time Antijamming Weight Vector

As discussed above, an effective space-time 2-D sparse array can be given, and the antenna selection
vector zs and tap selection vector zt are calculated by Eqs. (15) and (17), respectively. Determine the
weight vector w as the solution to the following optimization problem

min
w

wRs,twH s.t. wHa0,s,t = 1 (18)

where Rs,t and a0,s,t denote the covariance matrix and the space-time steering vector of the interesting
signal for the space-time 2-D sparse array given by Eqs. (15) and (17), respectively.

Thus, the optimal weight vector of the problem in Eq. (18) can be expressed as

w =
R−1

s,t a0,s,t

aH
0,s,tR

−1
s,t a0,s,t

(19)

Summary of the Proposed Method
Step 1 By Eqs. (15) and (17), design the space-time 2-D sparse array.

Step 2 Collect the sample data, and estimate the covariance matrix R̂ according to R̂ =
1
K

∑K
k=1 x(k)xH (k), where K denotes the snapshot number.
Step 3 Calculate the space-time 2-D antijamming weight vector w, according to Eq. (19).

4. SIMULATION RESULTS

In this section, several simulation results are given to verify the performance of the proposed method.
Consider a ULA with M = 8 antenna elements whose separation distances are half-wavelength, and each
element is equally spaced with P = 6 taps. Assume that there are four far field signals impinging on the
array. Among them, the DOA of the interesting satellite signals is set to θ1 = 0◦, and its normalized
center frequency is f1 = 1.0GHz. The directions of arrival of three interference signals are θ2 = −10◦,
θ3 = 5◦, θ4 = 0◦, respectively. Their corresponding center frequencies are f2 = 0.9GHz, f3 = 1.1GHz,
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f4 = 1.2GHz. The SNR of satellite signal is equal to −20 dB, and the interference-to-noise ratio (INR)
of the three interfering signals is equal to 40 dB.

Figure 2 shows the sparse diagram which is given by solving Eqs. (15) and (16) for the uniform
array with eight antennas in which each antenna is equipped with six equally spaced taps. In the case of
ensuring the maximum array gain, the first 5 antennas are selected, the 6th and 8th antennas discarded,
and then the taps are sparse on the basis of the selected 6 antennas, so that a space-time 2-D sparse
array is obtained with 6 antennas and 18 taps.

Figure 3(a) shows the space-time 2-D response diagram of the designed sparse array. As can be seen
in the pattern, it has better mainlobe for the interesting satellite signal at θ1 = 0◦ and f1 = 1.0 GHz,
and the three interference signals are perfectly suppressed. Figure 3(b) is a contour plot of the response
shown in Figure 3(a). It is easy to know that the coordinates of the three interference signals are located
at (θ2, f2) = (−10◦, 0.9GHz), (θ3, f3) = (5◦, 1.1GHz), (θ4, f4) = (0◦, 1.2GHz), respectively. As shown
in Figure 3, the presented method based on space-time 2-D sparse array not only effectively suppresses

Figure 2. Optimum space-time sparse array for M = 8, P = 6.
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interference signals, but also maintains a distortionless response to satellite signal.
For convenience, the uniform linear array with four antennas in which each antenna is equipped

with six equally spaced taps is named as A1, and the uniform linear array with six antennas in which
each antenna is equipped with four equally spaced taps is named as A2. Figure 4 shows the array gain
curves of the proposed method, A1, and A2, with input SNRs ranging from −35 dB to −5 dB. Compared
with A1 and A2, the proposed method had better array gain.
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Figure 4. Array gain versus input SNR for related array configuration.

5. CONCLUSION

This paper presents a space-time adaptive antijamming algorithm based on space-time 2-D sparse array
for GNSS receivers. Via maximizing the array gain, the selection vectors of antennas and taps are given,
respectively, so that an effective space-time 2-D sparse array is designed. Finally, an optimal space-time
2-D antijamming weight vector is calculated by minimizing the designed space-time 2-D sparse array
output power. Simulation results show that the proposed method has better antijamming performance.
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