Vol. 95
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-17
Sensitivity Considerations for Inline Fully Canonical Filters at Ku-Band
By
Progress In Electromagnetics Research M, Vol. 95, 125-133, 2020
Abstract
In this paper, a planar inline fully-canonical topology is proposed to reduce sensitivity to fabrication tolerances compared to conventional inline all-pole configurations. Major concerns are related with errors in the absolute positioning of via-holes to ground which affect inter-resonator (main-line) couplings. The total expanded sensitivity considering variations of the main-line couplings have been obtained for fully and non-fully canonical configurations. The result shows that sensitivity is lower in the case of fully-canonical topologies. Moreover, the allocation of the transmission zeros plays a key role in terms of sensitivity. A prototype has been designed for the Ku-band based on asymmetrical coupled lines obtaining IL=-1.6 dB, RL below -18 dB, and out-of-band rejection higher than -50 dB.
Citation
Jordi Verdú Tirado, Ivan Baro, Eloi Guerrero, Patricia Silveira, Angel Triano, Gary Junkin, and Pedro de Paco, "Sensitivity Considerations for Inline Fully Canonical Filters at Ku-Band," Progress In Electromagnetics Research M, Vol. 95, 125-133, 2020.
doi:10.2528/PIERM20070102
References

1. Xu, J., W. Hong, H. Zhang, and H. Tang, "Compact bandpass filter with multiple coupling paths in limited space for Ku-band application," IEEE Microw. Wirel. Co., Vol. 27, No. 3, 251-253, 2017.
doi:10.1109/LMWC.2017.2661970

2. Maasen, D., F. Rautschke, and G. Boeck, "Design and comparison of various coupled line Tx-filters for a Ku-band block upconverter," German Microwave Conference (GeMiC), 225-228, 2016.
doi:10.1109/GEMIC.2016.7461596

3. Goldfarb, M. E. and R. A. Pucel, "Modeling via hole grounds in microstrip," IEEE Microwave and Guided Wave Letters, Vol. 1, No. 6, 135-137, 1991.
doi:10.1109/75.91090

4. Swanson, D. G., "Grounding microstrip lines with via holes," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 8, 1719-1721, 1992.
doi:10.1109/22.149532

5. Yang, Y., M. Yu, and Q. Wu, "Advanced synthesis technique for unified extracted pole filters," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 12, 4463-4472, 2016.
doi:10.1109/TMTT.2016.2623618

6. Park, J., S. Lee, and Y. Lee, "Extremely miniaturized bandpass filters based on asymmetric coupled lines with equal reactance," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 2, 261-269, 2012.
doi:10.1109/TMTT.2011.2175744

7. He, Y., G. Wang, X. Song, and L. Sun, "A coupling matrix and admittance function synthesis for mixed topology filters," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 12, 4444-4454, 2016.
doi:10.1109/TMTT.2016.2614666

8. Gimenez, A., J. Verdu, and P. de Paco, "General synthesis methodology for the design of acoustic wave ladder filters and duplexers," IEEE Access, Vol. 6, 47969-47969, 2018.
doi:10.1109/ACCESS.2018.2865808

9. Cameron, R., C. Kudsia, and R. Mansour, Microwave Filters for Communications Systems: Fundamentals, Design, and Applications, Wiley, 2018.
doi:10.1002/9781119292371

10. Macchiarella, G., "Accurate synthesis of inline prototype filters using cascaded triplet and quadruplet sections," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 7, 1779-1783, 2002.
doi:10.1109/TMTT.2002.800429

11. Martınez-Mendoza, M., C. Ernst, J. A. Lorente, A. Alvarez-Melcon, and F. Seyfert, "On the relation between stored energy and fabrication tolerances in microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 7, 2131-2141, 2012.
doi:10.1109/TMTT.2012.2195023

12. Martınez-Mendoza, M., F. Seyfert, C. Ernst, and A. Alvarez-Melcon, "Formal expression of sensitivity and energy relationship in the context of the coupling matrix," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 11, 3369-3375, 2012.
doi:10.1109/TMTT.2012.2216286

13. Nedelchev, M. and D. Dobrev, "Low sensitivity symmetrical response microwave filters," Microelectronics Journal, No. 37, 546-553, 2006.
doi:10.1016/j.mejo.2005.08.002

14. Junkin, G., "Conformal FDTD modeling of imperfect conductors at millimeter wave bands," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 199-205, 2011.
doi:10.1109/TAP.2010.2090490

15. Triano, A., J. Verdu, P. De Paco, T. Bauer, and K. Wagner, "Relation between electromagnetic coupling effects and network synthesis for AW ladder type filters," IEEE International Ultrasonics Symposium (IUS), 2017.