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Abstract—In this paper, a planar inline fully-canonical topology is proposed to reduce sensitivity
to fabrication tolerances compared to conventional inline all-pole configurations. Major concerns are
related with errors in the absolute positioning of via-holes to ground which affect inter-resonator (main-
line) couplings. The total expanded sensitivity considering variations of the main-line couplings have
been obtained for fully and non-fully canonical configurations. The result shows that sensitivity is lower
in the case of fully-canonical topologies. Moreover, the allocation of the transmission zeros plays a key
role in terms of sensitivity. A prototype has been designed for the Ku-band based on asymmetrical
coupled lines obtaining IL = −1.6 dB, RL below −18 dB, and out-of-band rejection higher than −50 dB.

1. INTRODUCTION

Planar technologies are considered for Ku-band filters in space applications as an alternative to coupled
waveguide cavities in order to reduce the size and weight of transceiver units [1]. In particular, microstrip
filter designs using classical and cross-coupled hairpin, interdigital or slowave resonators in the Ku-band
are found in [2]. These inline canonical filters are very well-known topologies in which a set of resonant
nodes (RNs) are connected by means of main-line couplings. When no cross-couplings are present,
non-fully-canonical (NFC) all-pole filters can be obtained which are characterized by the allocation of
all the transmission zeros (TZ) at infinity.

One of the drawbacks of these NFC configurations is the high sensitivity to fabrication tolerances,
so small fabrication deviations can lead to out of specification filter responses mainly in what refers to
return loss. This is more critical in configurations requiring short-circuited (SC) terminations since they
are particularly dependent on the fabrication tolerances of the absolute positioning of the via-holes on
the board [3,4].

With the objective to reduce the sensitivity to fabrication tolerances, an inline fully-canonical (FC)
filter based on extracted pole sections is considered. In this case, the filtering function contains as many
finite transmission zeros as the order of the filter N . Although it is mentioned that FC are less sensitive
to fabrication tolerances since each transmission zero is independently controlled [5], a detailed analysis
is provided in this work based on the total expanded sensitivity considering different configurations. It
will also be proven that the allocation of the finite transmission zeros plays an important role in terms
of sensitivity.

To provide an experimental validation, an FC filter based on asymmetrical coupled lines [6, 7] is
proposed, as an alternative to classical coupled resonator configurations. As it will be further discussed,
the equivalences between the nodal representation of the extracted pole FC filter, the distributed model,
and the prototype based on asymmetrical coupled lines are outlined in Fig. 1. The filter has been
designed to operate in the Ku-band, with f0 = 13.55 GHz.
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Figure 1. (a) Nodal topology, (b) Distributed transmission lines equivalent and (c) Asymmetric
transmission lines equivalent.

The paper begins by analysing the total extended sensitivity in both FC and NFC configurations.
Subsequently, the equivalence using the asymmetrical coupled lines is briefly discussed. Finally, the
planar FC filter in Ku-band is designed, fabricated, and experimentally validated, and favourable
conclusions are presented.

2. SENSITIVITY ANALYSIS FOR FULLY-CANONICAL AND
NON-FULLY-CANONICAL ALL-POLE FILTERS

The nodal representation for an inline FC filter is depicted in Fig. 1(a). This is composed by the
connection of basic cells, the dangling resonator, defined in the lowpass domain by the non-resonant
node (NRN) reactance jBi, the resonant node (RN) susceptance jbi, and the coupling Jri between the
RN and NRN. The dangling resonators are connected by means of main-line couplings Jij [8]. Following
the minimum path rule [9], since there is a direct source-to-load coupling through the NRNs path, the
FC topology may present as many TZs as the order of the filter N .

The use of synthesis tools allows obtention of the coupling matrix [M ] for both NFC and FC
filters [8,10], defined by the filter function. In the case of NFC topologies, the RNs are allocated in the
diagonal of [M ], while the couplings and cross-couplings, if they exist, are in the off-diagonal positions.
In the case of the FC configuration, the difference is that the NRN reactances are allocated in the
diagonal of [M ]. However, they are not frequency dependent. Therefore, corresponding positions in
the frequency matrix [W ] will be null. For FC case, main-line couplings are those connecting NRNs.
Taking into account that termination (source and load) nodes are allocated in positions (1, 1) and (2,
2), respectively, [M ] and [W ] matrices are defined as follows,

M=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jBs 0 0 0 0 JS1 0 0 · · ·
0 jBL 0 0 0 0 0 0 · · ·
0 0 −jb1 0 0 Jr1 0 0 · · ·
0 0 0 −jb2 0 0 Jr2 0 · · ·
0 0 0 0

. . . 0 0
. . . · · ·

JS1 0 Jr1 0 0 jB1 J12 0 · · ·
0 0 0 Jr2 0 J12 jB2 J23 · · ·
0 0 0 0

. . . 0 J23
. . . · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 · · ·
0 0 0 0

. . . 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0

. . . · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)
Since there is a direct link between the coupling matrix and physical dimensions of the filter, the

filter sensitivity can be evaluated by the gradient of S11 with respect to [M ]-entries. For high variations
on ΔMij it is more accurate to use the expanded sensitivity Kij,EXT [11]. This can be calculated, at
each frequency point, as the highest value given a certain interval in ΔMij :

Kij,EXT = max

(∣∣∣∣ ∂S11

∂Mij

∣∣∣∣
Mij,min<Mij<Mij,max

)
(2)
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The main fabrication issues are related to the positioning of the via-holes affecting inter-resonator (main-
line) couplings, that is, Mij elements connecting RNs in the NFC configuration and NRNs in the FC
one. For the analysis of the total expanded sensitivity and taking into account the tolerances related to
the fabrication process, variations of ΔMij = ±0.055 have been considered.

First, the total expanded sensitivity has been obtained for an all-pole NFC configuration with
RL = 15 dB and different filter orders ranging from N = 4, . . . , 11. As shown in Fig. 2, higher order
leads to higher sensitivity in the in-band region. On the other hand, as the order increases, so the
selectivity, and the sensitivity drops faster in the transition from the in-band to the out-of-band region
(|Ω| > 1), with Ω being the normalized frequency. The observed peaks in the total expanded sensitivity
corresponds to the position of the reflection zeros. Then, for odd configurations in which there is a
reflection zero allocated at Ω = 0 rad/s, a local maximum will be present. It has to be pointed out that
there is a direct relationship between the total expanded sensitivity and the total average stored energy
(TASE) in such a way that at the position of the reflection zeros, the local maximum value and the
TASE are coincident [11,12].

-1.5 -1 -0.5 0 0.5 1 1.5
Normalized Frequency  (rad/s)

0

10

20

30

40

50

60

T
ot

al
 E

xp
an

de
d 

Se
ns

iti
vi

ty
 

N = 4
N = 5

N = 6
N = 7

N = 8
N = 9

N = 10
N = 11

Figure 2. Total expanded sensitivity Kij,EXT for NFC all-pole configuration with N = 4, . . . , 11;
RL = 15 dB ΔMij = ±0.055.

Taking into account the results for the all-pole configurations, several considerations must be taken
into account in order to analyse the FC extracted pole. In FC, the allocation of the reflection zeros
is symmetric with respect Ω = 0 rad/s as it is the total expanded sensitivity. In FC configurations,
the allocation of the reflection zeros may not be symmetric, and there is a strong relation with the
allocation of the finite transmission zeros. Due to this, it is worthy to differentiate between even and
odd configurations.

Figure 3 shows the total expanded sensitivity for even and odd FC extracted pole configurations.
Without loss of generality, the finite transmission zeros have been allocated at alternating Ωi =
±3.2 rad/s. As it occurs in the all-pole case, for even and odd configurations, as the order of the
filter increases, the in-band sensitivity also increases. The result for the even configuration in Fig. 3(a)
shows a symmetric behaviour of the total expanded sensitivity in the transition region between the in-
band and out-of-band. In the case of odd configurations, the multiplicity of the transmission zero above
the passband, that is Ω = +3.2 rad/s, is one degree higher. This effect can be observed in Fig. 3(b),
where the total expanded sensitivity drops faster above the passband than below since the selectivity
is higher in this region. Unlike the all-pole, in FC configurations, reflection zeros (RZ) are usually
asymmetrically allocated in the in-band.

With the aim to observe how the allocation of the finite transmission zeros affects the total expanded
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sensitivity, two FC extracted pole configurations with N = 4 and N = 10 and position of the finite
transmission zero at Ω = ±3.2 rad/s (solid lines) and Ω = ±1.2 rad/s (dashed lines) have been compared
as shown in Fig. 4. In what refers to the drop of the sensitivity, it is evident that this is faster in the
case where the transmission zero is closer to the bandpass since the selectivity will be higher.

The in-band behavior in both cases is also different. As discussed in [13], the filter’s sensitivity
depends on the frequency separation between reflection zeros. The lower the frequency distance is
between zeros, the higher the sensitivity is. This effect is more evident for even configurations where a
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Figure 3. Comparison for (a) even, and (b) odd configurations. The transmission zeros are allocated
at Ωi = ±3.2 rad/s. (a) Comparison for even configurations with N = 4, 6, 8, 10. (b) Comparison for
odd configurations with N = 5, 7, 9, 11.
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Figure 4. Comparison of the total expanded
sensitivity for FC extracted pole filters with N =
4 and N = 10; RL = 15 dB and finite transmission
zeros at Ω = ±3.2 (solid lines) and Ω = ±1.2
(dashed lines).
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Figure 5. Comparison of the total expanded
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pair of reflection zeros are allocated almost symmetrically around the centre of the bandpass Ω = 0 rad/s
unlike the odd case. On the other hand, the finite transmission zeros are responsible for the allocation
of the reflection zeros. As seen in Fig. 4, as the transmission zero is closer to the bandpass, the reflection
zeros tend to be also allocated close to the bandpass edge. The fact of increasing the distance between
reflection zeros leads to decreasing the sensitivity in the centre of the band, minimizing return loss
degradation in this region.

As it will be further discussed in the next section, the proposed prototype can be only designed
in such a way that all the transmission zeros are allocated above the passband. Taking this into
consideration, it is worthy to carry out a comparison between an all-pole NFC and the FC extracted pole
with the transmission zeros at Ω = 3.2 rad/s, Ω = 3.7 rad/s, and Ω = 3.9 rad/s, each with multiplicity 2.
Previous configurations with transmission zeros above and below the passband have also been included
in the comparison. The results are shown in Fig. 5. First, it can be seen that the all-pole configuration
is the most sensitive. The prototype to be designed will contain all TZs above the passband (Ωi > +1);
therefore, the sensitivity above the passband will drop fast. On the other hand, since no TZs are below
the passband, the sensitivity in this region will be comparable to that of the all-pole configuration. In
relation with the FC with alternating sign transmission zeros, the sensitivity in the centre of the band
is lower in the case of the configuration with the highest selectivity (Ω = ±1.2 rad/s. As previously
discussed, the allocation of the local maximum corresponds to the position of the reflection zeros.

3. INLINE FULLY-CANONICAL FILTER DESIGN BASED ON ASYMMETRIC
COUPLED LINES

An in-line fully canonical extracted pole filter is proposed as an alternative to the classical coupled
resonator filter in order to improve sensitivity to fabrication tolerances. As previously mentioned,
the prototype will be implemented in planar technology by means of asymmetric coupled lines (ACL)
sections. To design the filter, first of all, the characteristic polynomials are obtained once the order of
the filter N , RL, and the allocation of TZs are set [9]. The elements are obtained by means of successive
extractions from the input admittance, or equivalently by successive updates of the [ABCD] matrix
as proposed in [8]. At this point, the elements of the lowpass prototype corresponding to the nodal
representation in Fig. 1(a) are obtained. Next, the elements are transformed to the bandpass domain,
and they are related to the specific technology used to design the filter.

The RN and NRN can be directly translated to distributed transmission lines as shown in Fig. 1(b).
The RN consists of a unit capacitor in shunt configuration with a susceptance b. When this structure
is moved to the other side of the inverter Jr, it becomes an inductance in series with a susceptance as
detailed in [8]. This structure can be implemented with a classical λ/4 open-circuit transmission line
at the frequency of the TZ, with the characteristic impedance being Z0 = 4ω0L/π and L the equivalent
inductance. On the other hand, the frequency and impedance scaling of the lowpass inductance is
defined as,

L =
Z0

2

(
2α + bi

J2
riω0

)
, α =

f0

Bw
(3)

with f0 being the central frequency and Bw the bandwidth. Then, it is straightforward to compute the
characteristic admittance of the λ/4 transmission line implementing the resonator as,

Yri =
π

4

(
2
(

J2
ri

2α + bi

))
(4)

The implementation of the NRN can be performed by means of an open-circuit (OC) or SC-stub
depending on the sign of the reactance Bi. When the TZ is below the passband (negative in the lowpass
domain) Bi > 0, while Bi < 0 when the TZ is above the passband [8]. Positive reactances will be
implemented by means of an OC-stub, and negative reactances will be implemented using an SC-stub.
Unlike the implementation of the resonator, the electrical length θ = βl can be freely chosen in the
following way,

YBi = −jBi cot (βl) Bi < 0
YBi = jBi tan (βl) Bi > 0

(5)
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The concatenation of a shunt SC-stub with an admittance inverter and an SC-stub can be
compacted into ACL sections [6, 7] as shown in Fig. 1(c). The TZs have to be set above the passband
to obtain Bi < 0 (SC-stubs) in order to achieve such compactness. To carry out the equivalence, each
NRN except the first and the last one will be split into two shunt NRNs with admittance 2YBi, so the
filter will be finally composed of (N − 1) ACL sections.

3.1. Degree of Freedom in Asymmetric Coupled Lines

The equation in Equation (5) shows that there is a degree of freedom in the election of the electrical
length of the SC-stubs. Among other considerations, this election will also affect the sensitivity of the
filter. As seen in [6], the electrical length θ of the stubs will be directly related to the ACL section
electrical length. On the other hand, it is well known that for a specific coupling value, shorter coupled
lines will require a narrower gap while longer lines will require a wider gap. Since the coupling is a
critical parameter in the design of the ACL, it is important to analyse how the coupling value deviates
from the theoretical depending on variations in the electrical length θ or in the gap S. This can also be
related to fabrication tolerances.

Although fabrication tolerances result in absolute variations, in this case, relative variations have
been considered to carry out the analysis. Fig. 6 shows the relative deviation of the coupling value as
a function of relative variation in the gap S (solid lines) and relative variation in the electrical length θ
(dashed lines). Since the electrical length θ is set a-priori, three nominal cases have been considered for
the analysis: θ = 30◦, 45◦, 60◦. It is seen that the shorter electrical length is less sensitive to changes
on both the electrical length and the gap. Moreover, deviations in the electrical length lead to higher
error in the coupling value than deviations in the gap.
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Figure 6. Relative deviation in the resulting coupling value as a function of relative variations of the
gap S (solid lines) and electrical length θ (dashed lines) for coupled lines with θ = 30◦ (no symbol),
θ = 45◦ (square) and θ = 60◦ (circle).

Taking into account the results in Fig. 6, it is desired to decrease, as much as possible, the electrical
length θ of the ACL in the first/last section of the filter to minimize the effects of via-holes since they
are mainly responsible for the in-band equiripple RL. The minimum θ value is set by the narrowest gap
that can be implemented with the fabrication process.

4. EXPERIMENTAL VALIDATION

A prototype for the Ku-band in the range of 12,5 to 14,7 GHz has been developed to fulfill RL < −15 dB
and OoB rejection higher than −40 dB at 9 and 17 GHz. The order of the filter is N = 6, and the RL
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Table 1. Resulting valued for the lowpass prototype elements and corresponding admittances for the
λ/4 resonators Yri, and short-circuited stubs YBi.

Res1 Res2 Res3 Res4 Res5 Res6
Jri 2.753 4.180 4.954 4.685 4.420 2.604
bi −3.2 −3.7 −3.9 −3.9 −3.7 −3.2
Bi −2.596 −5.079 −6.72 −6.009 −5.679 −2.629

Yri (Ω−1) 0.0261 0.0637 0.0916 0.0819 0.0712 0.0234
YBi (Ω−1) 0.03 0.0587 0.0776 0.0694 0.0656 0.0304

Table 2. Obtained physical dimensions for the resonators of the fabricated prototype.

Res1 Res2 Res3 Res4 Res5 Res6
Wr (µm) 140 120 120 120 120 140
Lr (µm) 1.5 1.54 1.09 1.09 1.54 1.5

Table 3. Obtained physical dimensions for the ACL sections of the fabricated prototype.

ACL1 ACL2 ACL3 ACL4 ACL5

Wa (µm) 120 60 130 60 120
Wb (µm) 40 110 140 110 40
L (µm) 560 1270 830 1270 565
S (µm) 10 40 140 40 10

Table 4. Comparison with other topologies based on Alumina substrates [2].

FBW IL RL f0 Group Delay Size
(%) (dB) (dB) (GHz) (ns) (mm)

CLF 28.6 1.5 13 14.21 0.2 ± 0.03 9 × 2
Hairpin 14.8 1.5 20 14.11 0.38 ± 0.04 10 × 6
Ring res. 9.7 2.2 17 14.38 0.64 ± 0.06 7 × 2.5

Interdigital 11.2 1.9 10 13.96 0.48 ± 0.03 3 × 3
This work 16.2 1.6 18 13.55 0.45 ± 0.05 7.9 × 3.9

has been set to −25 dB, so further degradation of the RL due to fabrication deviations can be accounted
for. The allocation of the transmission zeros is Ωi = [3.2, 3.7, 3.9, 3.9, 3.7, 3.2] rad/s, so the NRNs will be
implemented by means of SC-stubs. With this distribution of finite transmission zeros, the selectivity
mask is fulfilled as well as the out-of-band rejection. The resulting values for the lowpass prototype Jri,
bi, and Bi from the synthesis procedure are stated in Table 4, as well as Yri and YBi using Equations (4)
and (5). The ratio between the central frequency f0 and bandwidth Bw is α = 6.16. The filter has been
modelled in 3D using the Dey-Mittra conformal FDTD method described in [14] running on a GPU.

To reduce the sensitivity of the filter, the electrical lengths of the SC-stubs have been set for each
section θi = [30◦, 60◦, 30◦, 60◦, 30◦]. As previously discussed, it is important to decrease, as much as
possible, the electrical length in the first and last sections. The dimensions of the prototype for the
resonators and the ACL sections are found in Tables 1 and 3, respectively.

The final prototype in Fig. 7 was fabricated in Alumina (10 mil) Al2O3 with εr = 9.6, tan δ = 0.0002,
σ = 4.1e7 Sm−1. The via-holes are defined by a diameter of 150 µm in a square pad of 250 × 250µm2

with a tolerance of ±50µm in the positioning. This will affect effective lengths Li of ACL sections.
The filter response is shown in Fig. 8 with IL = −1.6 dB, RL < −18 dB, and OoB higher than

−50 dB at 9 GHz and 17 GHz as specified. Simulation and measurement show a very good agreement.
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Figure 7. Fabricated in-line prototype using asymmetric coupled lines (ACL).

Figure 8. S-Parameters comparison between the
EM simulation using CFTD (dotted line) and the
measurement of the prototype (solid line).

Deviation in via-hole position (µm)
-50 0 50

M
SE

 

0

50

100

150

200

250
Interdigital
This work

Figure 9. Comparison of the degradation on the
RL as a function of the allocation of the via-holes
between the proposed topology and the classical
interdigital non fully-canonical configuration.

Deviations in the return losses are mainly due to the fabrication tolerances. As this was previously
considered in the design process and the analysis of the worst case, the filter response fulfills return loss
specifications. On the other hand, although the transmission zeros are expected to be more pronounced,
coupling from input to output through the substrate could affect the filter response as discussed in [15].
The electrical performance comparison with other filter topologies based on Alumina substrate is found
in Table 4. Although the aim of this work is to demonstrate the sensitivity improvement, it is evident
that the obtained electrical performance is comparable with all-pole inline NFC conventional topologies
based on coupled resonators.

Monte Carlo simulations have been carried out to analyze the degradation of the RL in the proposed
design compared with an NFC inline interdigital filter. The minimum square error (MSE) has been
calculated for the return losses degradation as a function of the absolute deviation of the positioning of
the via-hole ground taking into consideration the fabrication tolerances, in this case, ±50 µm. As seen
in Fig. 9, the proposed design has a sensitivity around half of that of a conventional interdigital.

5. CONCLUSION

The analysis of the total expanded sensitivity has demonstrated that inline fully-canonical filters based
on extracted pole sections are less sensitive than all-pole inline non-fully-canonical filters for even/odd
topologies. The analysis has considered absolute variations in the main-line couplings, the most affected
by fabrication tolerances, particularly variations in the positioning of the via-hole groundings. It has
also been seen that, in the case of FC topologies, the allocation of the finite transmission zeros plays an
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important role in the sensitivity. The closer the transmission zeros are to the bandpass, the faster the
sensitivity drops in the transition region. However, at the same time, the distance between reflection
zeros is higher leading to sensitivity increase in the in-band. With the aim to carry out the experimental
validation, a Ku-band filter has been designed, simulated, fabricated, and characterized. The filter
has been implemented in planar technologies by means of asymmetrical coupled lines. It has been
shown experimentally to have a return loss sensitivity that approximates half of that of an equivalent
interdigital filter, due to variations in the positioning of the via-hole groundings. The prototype presents
IL = −1.6 dB, RL < −18 dB, and out-of-band rejection higher than −50 dB.
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