Vol. 97
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-25
Microwave Imaging Solutions for Medical Imaging Using Re-Weighted Basic Pursuit Algorithm
By
Progress In Electromagnetics Research M, Vol. 97, 13-24, 2020
Abstract
This paper describes an innovative technique for the quantitative reconstruction of the dielectric and conductivity distribution of objects in a microwave tomography framework using sparse data. The proposed method tries to extract information about the size, shape, localisation and dielectric distribution of various inclusions within the object under study using an iterative reconstruction methodology in the sparse domain. The proposed algorithm combines the Distorted Born Iteration method (DBIM) and a convex optimization technique for solving the inverse ill-posed problem. The Re-weighted Basis Pursuit (RwBP) algorithm is chosen as the convex optimization technique in this work. The performance of the proposed algorithm has been compared with the TV-norm method, and the results obtained are highly encouraging. The proposed method produces a significant reduction in the reconstruction error as compared to the TV norm method with an error value of 0.083 as against 0.32 in the case of TV norm in the presence of 25 dB noise. By accurately preserving the edges of the inclusions the proposed technique is found to provide an overall improvement in the reconstruction in terms of tissue differentiation (permittivity and conductivity), dimensions of inclusions, resolution, shape, size and coordinate localisation of inclusions. The proposed algorithm converges within 10-12 iterations as compared to other complex imaging algorithms available in the literature. Further, this proposed technique is validated using experimental data from an actual breast imaging setup. The three inclusions of 10 mm, 6 mm, and 3 mm have been localised with errors of 0.052, 0.04, and 0.09, respectively The results obtained from the real-time data show the applicability and feasibility of the proposed algorithm in breast tumor imaging application
Citation
Thathamkulam Anjit, Ria Benny, Philip Cherian, and Mythili Palayyan, "Microwave Imaging Solutions for Medical Imaging Using Re-Weighted Basic Pursuit Algorithm," Progress In Electromagnetics Research M, Vol. 97, 13-24, 2020.
doi:10.2528/PIERM20063007
References

1. Semenov, S. Y., A. E. Bulyshev, V. G. Posukh, Y. E. Sizov, T. C. Williams, and A. E. Souvorov, "Microwave tomography for detection/imaging of myocardial infarction. 1. Excised canine hearts," Ann. Biomed. Eng., Vol. 31, 262-270, 2003.
doi:10.1114/1.1553452

2. Anishchenko, L. N., I. L. Alborova, M. A. Chizh, and A. V. Zhuravlev, "Microwave imaging of biological tissue phantom in different frequency ranges," 2016 Progress In Electromagnetic Research Symposium (PIERS), 4639-4643, Shanghai, China, August 8–11, 2016.

3. Yaswanth, K., S. Bhattacharya, and U. K. Khankhoje, "Algebraic reconstruction techniques for inverse imaging," 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, Australia, September 2016.

4. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402

5. Huang, T. and A. S. Mohan, "Microwave imaging of perfect electrically conducting cylinder by micro-genetic algorithm," IEEE Antennas and Propagation Society Symposium, Vol. 1, IEEE, 2004.

6. Semenov, S. Y., et al., "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2284-2294, July 2005.
doi:10.1109/TMTT.2005.850459

7. Chew, W. C. and G. P. Otto, "Microwave imaging of multiple metallic cylinders using shape functions," IEEE Antennas and Propagation Society International Symposium, 1992 Digest, IEEE, 1992.

8. Colgan, T. J., S. C. Hagness, and B. D. van Veen, "A 3-D level set method for microwave breast imaging," IEEE Trans. Biomed. Eng., Vol. 62, No. 10, 2526-2534, 2015.
doi:10.1109/TBME.2015.2435735

9. Bayat, N. and P. Mojabi, "A mathematical framework to analyze the achievable resolution from microwave tomography," IEEE Trans. Antennas and Propag., Vol. 64, No. 4, 1484-1489, 2016.
doi:10.1109/TAP.2016.2526061

10. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Prob., Vol. 25, 1-41, 2009.

11. Majobi, P. and J. LeVetri, "Comparison of TE and TM inversions in the framework of the GaussNewton method," IEEE Trans. Antennas and Propag., Vol. 64, 1336-1348, 2010.
doi:10.1109/TAP.2010.2041156

12. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

13. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, Vol. 58, No. 6, 1182-1195, 2008.
doi:10.1002/mrm.21391

14. Pan, X. and E. Y. Sidky, "Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization," Physics in Medicine and Biology, Vol. 53, No. 17, 4777-4807, 2008.
doi:10.1088/0031-9155/53/17/021

15. Chinn, G., P. D. Olcott, and C. S. Levin, "Sparse signal recovery methods for multiplexing PET detector readout," IEEE Transactions on Medical Imaging, Vol. 32, 932-942, 2013.
doi:10.1109/TMI.2013.2246182

16. Rudin, L. I. and S. Osher, "Total variation based image restoration with free local constraints," Proc. International Conf. Image Processing, Austin, USA, 1994.

17. Zhou, H. and R. M. Narayan, "Microwave imaging of nonsparse object using dual-mesh method and iterative method," IEEE Trans. Antennas and Propag., Vol. 67, 504-512, 2019.
doi:10.1109/TAP.2018.2876164

18. Yalcin, E. and O. Ozdemir, "Sparsity based regularization for microwave imaging with NESTA algorithm," Proc. IEEE Conference on Antennas Measurements and Applications (CAMA), Tsukuba, Japan, 2017.

19. Jamali, N. H., et al., "Image reconstruction based on combination of inverse scattering technique and total variation regularization method," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 5, No. 3, 569-576, 2017.
doi:10.11591/ijeecs.v5.i3.pp569-576

20. Chen, S. and D. Donoho, "Basis pursuit,", Technical Report, Department of Statistics, Stanford University, 1995.

21. Azghani, M. and F. Marvasti, "L2-regularized iterative weighted algorithm for inverse scattering," IEEE Trans. Antennas and Propag., Vol. 64, No. 6, 2293-2300, 2016.
doi:10.1109/TAP.2016.2546385

22. Tibshirani, R., "Regression shrinkage and selection via the LASSO," J. Roy. Statist. Soc., ser. B, Vol. 58, No. 1, 267-288, 1996.

23. Chartrand, R. and V. Staneva, "Restricted isometry properties and nonconvex compressive sensing," Inverse Prob., Vol. 24, 035020, 2008.
doi:10.1088/0266-5611/24/3/035020

24. Wang, Y., J. Zeng, Z. Peng, X. Chang, and Z. Xu, "Linear convergence of adaptively iterative thresholding algorithms for compressed sensing," IEEE Transactions on Signal Processing, Vol. 63, No. 11, 2957-2971, June 2015.
doi:10.1109/TSP.2015.2412915

25. Mansour, H. and O. Yilmaz, "Support driven reweighted 1 minimization," 2012 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2012.

26. Asif, M. S. and J. Romberg, "Sparse recovery of streaming signals using l1-homotopy," IEEE Transactions on Signal Processing, Vol. 62, No. 16, 4209-4223, July 2014.
doi:10.1109/TSP.2014.2328981

27. Tavassolian, N., H. Kanj, and M. Popovic, "Assessment of Dark eyes antenna radiation in the vicinity of the realistic breast model," 12th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, Canada, July 2006.

28. Fear, E. C. and M. Okoniewski, "Confocal microwave imaging for breast tumor detection: Application to a hemispherical breast model," 2002 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1759-1762, June 2–7, 2002.

29. Estatico, C., M. Pastorino, and A. Randazzo, "A novel microwave imaging approach based on regularization in banach spaces," IEEE Trans. Antennas and Propag., Vol. 60, No. 7, 3373-3381, 2012.
doi:10.1109/TAP.2012.2196925

30. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

31. Philip, C., T. A. Anjit, and P. Mythili, "A compact egg-shaped UWB antenna for breast dielectric profile imaging," International Journal of Scientific & Technology Research (IJSTR), Vol. 9, No. 3, March 2020.