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Abstract—This paper describes an innovative technique for the quantitative reconstruction of the
dielectric and conductivity distribution of objects in a microwave tomography framework using sparse
data. The proposed method tries to extract information about the size, shape, localisation, and dielectric
distribution of various inclusions within the object under study using an iterative reconstruction
methodology in the sparse domain. The proposed algorithm combines the Distorted Born Iteration
method (DBIM) and a convex optimization technique for solving the inverse ill-posed problem. The
Re-weighted Basis Pursuit (RwBP) algorithm is chosen as the convex optimization technique in this
work. The performance of the proposed algorithm has been compared with the TV-norm method, and
the results obtained are highly encouraging. The proposed method produces a significant reduction in
the reconstruction error as compared to the TV norm method with an error value of 0.083 as against
0.32 in the case of TV norm in the presence of 25 dB noise. By accurately preserving the edges of the
inclusions, the proposed technique is found to provide an overall improvement in the reconstruction
in terms of tissue differentiation (permittivity and conductivity), dimensions of inclusions, resolution,
shape, size, and coordinate localisation of inclusions. The proposed algorithm converges within 10–12
iterations as compared to other complex imaging algorithms available in the literature. Further, this
proposed technique is validated using experimental data from an actual breast imaging setup. The
three inclusions of 10 mm, 6 mm, and 3 mm have been localised with errors of 0.052, 0.04, and 0.09,
respectively. The results obtained from the real-time data show the applicability and feasibility of the
proposed algorithm in breast tumor imaging application.

1. INTRODUCTION

Microwave Imaging (MWI) has proven its potential utility and effectiveness for a wide range
of applications. MWI for medical applications has promoted immense enthusiasm among the
researchers continuously. Conventional medical imaging systems currently used for diagnosis have many
disadvantages. X-ray mammography and CT scans cannot be used routinely on patients due to radiation
hazards and a high probability of false positives. Ultrasound and PET scans suffer from poor resolution
and involve procedures that cause discomfort for the patients. The diagnosis of malignant tissue or
tumorous growth using microwave imaging is thus a viable alternative with attributes like safety, non-
ionizing nature, reasonable penetration into the human tissue, and affordability. The key to microwave
imaging lies in the difference in the dielectric values between the normal tissues and malignant growths.
The same technique can be used for the detection of myocardial infarction based on the differences
in dielectric properties between normal and infarcted tissues in microwave based cardiac imaging [1].
The MWI process to detect the dielectric value differences (contrast function) proceeds in two steps,
namely, forward problem and inverse problem. The forward problem involves the illumination of the
object under study and the collection of the scattered waves. An estimate of the spatial distribution
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of the dielectric properties of the object is obtained from the measured scattered fields, by solving the
corresponding electromagnetic Inverse Scattering Problem (ISP) [2–4].

The formulation of ISP presents several theoretical and practical difficulties. Solving the contrast
function from the ISP is done by evaluating the Electric Field Integral Equation (EFIE). These EFIE
equations are nonlinear with two sets of unknown quantities (a) dielectric profile and (b) the total electric
field inside a scattering object. This nonlinearity leads to a large number of numerical solutions [5] due
to three major limitations (a) presence of evanescent waves, (b) local minima, (c) sensitivity of the
inverse problem to noise [6]. Since the evanescent waves produced in the region under study do not
reach the receiver location, fine-grained details will be lost in the inversion process. The remaining two
limitations in the case of an under-determined problem can be avoided by increasing the number of
transmitting and receiving antennas and by employing a suitable regularization technique in addition
to the actual inversion algorithm.

The commonly used approach to solve the inverse problem is to rely on iterative inversion algorithms
based on approximations like Born iteration method (BIM) or Distorted Born iterative methods (DBIM),
which solve the linear version of the nonlinear problem to some extent [7]. By using BIM or DBIM,
the contrast profile can be reconstructed to a resolution of one tenth of the wavelength [8]. If the
object to be imaged is more complex, the resolution that can be achieved will be reduced to half of the
wavelength [9]. Since the resolution is proportional to the number of unknowns, the constraints on the
number of unknowns to be estimated from a set of under-determined equations make it a challenging
problem. To overcome these issues and challenges, various regularization and optimisation methods
have been proposed by researchers to solve the ill-posed inverse problem. Stochastic techniques like
Genetic Algorithm, Particle Swarm Optimization, differential annealing, Ant Colony Optimization, etc.
have been successfully applied to optimise the solution to the inverse scattering problem [10]. However,
due to the increased computational complexity posed by these methods, they are less preferred by
researchers. In the case of deterministic regularisation methods like Singular Value Decomposition
(SVD), Conjugate Gradient Least Squares (CGLS), Tikhonov method, etc., the inverse problem is
modeled as an objective function, and it is subjected to some form of minimization technique [11].
However, when the imaging domain has sharp variations and discontinuities, these regularization
methods will produce extra smoothness instead of sharp changes and eventually become inefficient.

To overcome the above-mentioned limitations, compressive sensing (CS) technique was introduced
into the MWI domain in 2008 [12]. CS is a popular technique in signal processing which is able to
reconstruct sparse or compressible signals exactly from a limited number of measurements, by solving
the optimization problem accurately. CS theory can be applied to those cases where the problem
under consideration is linear as well as when the unknown can be represented with only a few non-zero
coefficients in a given basis. Microwave imaging could in principle take significant advantage from CS
techniques, because of its ability to solve the under-determined set of equations using sparsity. Due to
the advantages of the CS techniques, it is currently widely used in conventional medical imaging field
such as MRI [13], CT [14], and PET [15]. It is a promising technique which can reduce the cost of data
acquisition and storage requirement.

Various algorithms have been proposed in the CS framework for MWI. One such method is
the Iterative Shrinkage Thresholding Algorithm (ISTA) which is gradient-based, where each iteration
involves matrix-vector multiplication followed by a shrinkage/soft-threshold step. However, they have
been recognized to produce a slow convergence [16]. Accelerated versions of ISTA like TWo-step IST
(TWIST), NESTA (Nesterov’s ISTA), Fast ISTA (FISTA), etc. are used to solve ISP with a faster rate of
convergence. Methods such as the Iterative Method with Adaptive Thresholding for Compressed Sensing
(IMATCS) in conjugation with the non-decimated wavelet transform [17] and the Total variation (TV)
CS [18] method (TV minimizes the integral of the gradient of the contrast function) were proposed with
better performances to overcome the slow convergence rate of the basic IMATCS algorithm, mainly
when there are a large number of degrees of-freedom.

The nonlinearity and ill-posedness of the electromagnetic inverse scattering problem can lead to
unstable reconstructions in MWI medical applications when dense or closely located scatterers appear in
the investigation region. In this paper, a two-dimensional (2D) tomographic reconstruction algorithm
namely the Re-weighted Basic Pursuit algorithm that provides a robust reconstruction along with a
better resolution has been proposed for medical applications. The inverse problem has been considered
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in the Compressive Sensing framework, and it is reviewed under the versatility offered by a convex
optimization approach. The performance of the proposed method has been validated using experimental
results and compared with the results reported by Jamali et al. [19].

The paper has been organised as follows. Section 2 describes the linear approximation of the
electromagnetic inverse problems along with the reconstruction algorithm under a CS framework.
Section 3 elaborates the reconstruction of the dielectric profile and its performance against noise. The
experimental setup used for imaging has been described, and the results obtained by reconstructing the
collected scattered data using the proposed method have been discussed as well. Section 4 concludes
the paper.

2. IMAGING ALGORITHM UNDER COMPRESSIVE SENSING FRAMEWORK

Microwave imaging is broadly classified into two categories, namely qualitative and quantitative. The
qualitative approach aims at obtaining localisation information about the scatterer (object function) like
shape, size, position, etc. This approach, however, is unable to retrieve the electromagnetic parameters
of the scatterers. This section describes the quantitative deterministic reconstruction method, aimed to
retrieve the values of the dielectric parameters of the imaging domain. This is achieved by solving the
nonlinear system of equations relating the unknown dielectric properties to the measured scattered field.
Section 2.1 discusses the formulation of the forward and inverse problems to obtain the quantitative
dielectric profile. Section 2.2 describes the re-weighted l1 analysis in the sparse domain to solve the
inverse problem.

2.1. Linear Approximation of EM Inverse Scattering Problem with DBIM

The objective is to image the dielectric contrast profile of the scatterer under consideration from
the finite number of scattered data measured around the vicinity of the object of interest. The
tomographic arrangement of the transmitter and receiver antennas for MWI is shown in Fig. 1. The
object under investigation is assumed to be inhomogeneous with respect to the dielectric permittivity εr

and conductivity σ, which is immersed in a homogeneous background medium having a permittivity εb.
For any 2D scattering problem, the complex dielectric profile varies only in the X-Y plane. The object
is illuminated by a TM polarised wave whose magnetic field is transverse to the axis of the scatterer. Nt

number of transmitting antennas and Nr number of receiver antennas are positioned around the object

Figure 1. Tomographic arrangement of transmitter and receiver antennas.
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at equal angular intervals. The entire arrangement corresponding to Fig. 1 is divided into an object
domain, i.e., the area which encloses the object to be imaged and the measurement domain, where the
measurements are done. The object domain is further divided into a grid of square-shaped cells, and
within each cell, the total electric field and the complex permittivity are assumed to be a constant. The
distance to any point inside the object domain is r and to any measurement point is r′ from the origin.

The imaging procedure begins with the transmitters illuminating the object under study at multiple
frequencies. The scattered fields for the given scatterer are then obtained at the receivers. This process
is termed as the forward problem. The relation between the values of the scattered field and the total
field at any point in the object domain is given by

Esc(r) = Et(r)− Ei(r) (1)

= ω2μ

∫
V

dr′G(r, r′)Δε(r′)Et(r′) (2)

Δε =
ε(r)− εb(r)

εb(r)
(3)

where Esc is the scattered Electric field, Et the total field, and Ei the incident field. G(r, r′) represents
the Green’s function, and ε(r) represents the permittivity over the object domain, V . The forward
problem is well posed and is solved using the Method of Moments (MoM) technique. The electric field
integral equation (EFIE) expressed in Equation (2) can be discretized and written in matrix form as

[Esc] = [G]
[
Et

]
[Δε] (4)

After evaluating the scattered field using Equation (4), the next step is to solve the inverse problem.
The dielectric profile of the object under investigation can be deduced from the measured scattered
data by using the deterministic algorithms like BIM, DBIM, etc. These algorithms are used to solve
the inverse scattering problem by linearizing it around a current estimate of the dielectric permittivity
and then seek progressively better estimates of the dielectric profile.

However, due to the nonlinearity of the inverse scattering problem, there is a risk that the solution
gets trapped in local minima. To avoid the nonlinearity, Born approximation replaces the total unknown
field, Et(r), with the known incident field. This approximates the nonlinear ISP with an under-
determined set of linear equations. The contrast function, Δε, is estimated from the resulting linear
integral equation at each iteration of the DBIM algorithm. The DBIM algorithm alternates between
the forward and inverse problems until it converges to a unique solution for the contrast function. The
above ill-posed inverse problem can be represented in linear form as

yM×1 ≈ ΦM×NxN×1 (5)

where y is the data vector matrix representing the measured scattered field, x the unknown contrast
function, and Φ the measurement matrix which is the product of Green’s function and the total field. In
the case of inverse imaging, the number of unknowns N (depends upon resolution of reconstruction) is
very much greater than the number of measured field values M , due to which the problem is ill-posed.
The aim is to recover x from the given scattered measurement data, y. A commonly used method to
solve the ill-posedness is to exploit the sparsity of the vector x. The key behind compressive sensing lies
on the sparsity of the signal and the incoherence of the sensing matrix. The profile to be reconstructed is
considered to be complex denoted by the vector x ∈ CN . For the sparse transformation, an orthonormal
basis Ψ ∈ CN×N is considered, in which the decomposition vector α ∈ CN of the profile may be defined
such that x ≡ Ψα. The signal is said to be sparse if it contains only K non-zero coefficients in its
decomposition [12], where K � N . The corresponding ill-posed inverse problem is defined as

y ≡ Θα + n with Θ ≡ ΦΨ ∈ CM×N (6)

where n ∈ CM is the independent and identical distributed noise. Recovering α from Eq. (6) proceeds
by finding the sparsest representation of α, subject to the following constraint:

min
α∈CN

‖α‖0 subjected to ‖y −Θα ‖2 ≤ ζ (7)

where ‖α‖0 counts the non-zero elements in α, and ζ is the upper bound of the l2 norm on the residual
noise n. The problem in Equation (7) is combinatorial, and NP-complete as the l0 norm is discrete and
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discontinuous in nature. Among many possible solutions to Θα = y, the one in which the coefficients
have minimum l1 norm is selected [20, 21]. In practice, however, the signals are rarely sparse and are
often corrupted by noise. The problem then changes to the reconstruction of an approximately sparse
signal x from its noisy measurements. In the presence of noise, the Basic Pursuit De-noising (BPDN)
or LASSO [22] is the minimization of l1 norm of the coefficients of the signal in the sparsity basis, under
a constraint on the l2 norm of the residual noise n.

min
α∈CN

‖α‖1 subjected to ‖y −Θα‖2 ≤ ζ (8)

The key difference between l1 minimization and l0 minimization is that l1 depends on the magnitude
of the coefficient whereas l0 depends on the count of non-zero elements. These two techniques become
equivalent when the measurement matrix satisfies a certain condition under the compressive sensing
context [23, 24]. To reconcile this imbalance, a re-weighted l1 minimization algorithm was proposed
by Candés et al. to mimic the l0 minimization behaviour. Re-weighted l1 minimization is a suitable
alternative when there is prior information regarding the signal to be recovered.

The algorithm proposed in this paper replaces the l1 norm in Equation (8) by the weighted l1 norm∑N
i=1 wi|ᾱ|, resulting in the formation of the re-weighted basis pursuit (RwBP) algorithm.

2.2. Object Profile Reconstruction — Re-Weighted Basis Pursuit Analysis

The reconstruction algorithm defined in Algorithm 1 [25] consists of solving a sequence of weighted l1
minimization problems. A weighted l1 problem is defined as

min
x∈RN

‖WΨT x ‖1 subjected to ‖y − Φx ‖2 ≤ ε with x ≥ 0 (9)

where W ∈ RD×D is a diagonal matrix with positive weights. In the case of the re-weighted approach,
a sequence of weighted l1 problems are solved, and the weights used for the next iteration are computed
from the values of the current solution. By using the function f(γ, x), the weights are updated after
each iteration as

f(γ, x) ≡ γ

γ + |x| (10)

where γ plays the role of stabilization parameter, and as γ → 0 the weighted l1 norm approaches the l0
norm. To approximate l0 norm by the re-weighted l1 algorithm, a homotopic strategy [26] is adopted,
which consists of solving a sequence of weighted l1 problems using a decreasing sequence {γ(t)}, where
t represents the iteration variable.

Algorithm 1 Image Reconstruction Algorithm
Require: y,Φ, β, ε, σc, Nmax

Ensure: Reconstructed Profile x̂
1: Initialize W (0) = I, t = 1 and ρ = 1
2: Compute

x̂(0) = 
(y,Φ,W (0), ε)
γ(0) = σs(ΨT x̂(0))

3: while ρ > η and t < Nmax do
4: Update the Weight Matrix:

W
(t)
ij = f(γ(t−1), α̂

(t−1)
i )δi,j, for i, j = 1, ...,D with α̂

(t−1)
i = ΨT x̂(t−1)

5: Compute a solution of Equation (9)
x̂(t) = 
(y,Φ,W (t), ε)

6: Update γ(t) = max(βγ(t−1), σc)
7: Update ρ = ‖x̂(t) − x̂(t−1)‖2/‖x̂(t−1)‖2
8: t← t + 1
9: end while

10: return x̂
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Using this scheme, a weighted l1 problem is solved, and its solution is used as the warm start
initialization for the next l1 iteration that is closer to the l0 problem. This process is repeated until
the solution becomes stationary. A rate parameter β, with 0 < β < 1, is used to control the sequence
γ(t) such that as γ(t) → 0, t → ∞. The value of γ(t) should ideally decrease to zero, but in the
presence of noise it is set to a lower bound so that γ(t) ≥ σc. Initially, x̂(0) is set as the solution of
the l1 problem and hence, γ0 = σs(ΨT x̂(t)), where σs(·) stands for the empirical standard deviation of
the signal. The re-weighted process continues until the relative variation between successive solutions,
‖x̂(t)− x̂(t−1)‖2/‖x̂(t)‖2, becomes smaller than the bound η, with 0 < η < 1, or it reaches the maximum
number of allowed iterations, Nmax.

3. SIMULATIONS RESULTS FOR THE PROPOSED TECHNIQUE

In this section, the implementation of the proposed technique is accomplished through the use of a
simplified breast phantom. The proposed algorithm is used to detect the presence of tumor tissues from
the normal breast tissues. The difference in dielectric contrast between the normal and the malignant
tissues is the key for MWI. The dielectric values normally reported for different breast tissues are shown
in Table 1. An inverse scattering problem has to be solved to retrieve the dielectric properties of breast
tissues from the measured scattered fields. Simulations are conducted on a breast phantom having
circular geometry with a 5mm thick outer skin layer and an inner layer of fatty breast tissues of radius
45 mm. Two tumors of size 6mm and two glandular inclusions of size 10 mm are eccentrically embedded
in the phantom as shown in Fig. 2.

Table 1. Electromagnetic parameters of breast phantom.

Breast profile [27, 28] Relative permittivity Conductivity (S/m)
Skin 32 4.0

Fatty breast tissue 9 0.40
Glandular tissue 11 0.45

Tumor 40 4.0

(a) (b)

Figure 2. Representation of (a) the permittivity profile ε′, (b) the conductivity profile ε′′ of the breast
phantom at 3 GHz.

Method of Moments (MoM) is applied to simulate the reflected and scattered waves from various
layers of the breast phantom. In this simulation, antennas are assumed to be on the circumference of
a circle (as shown in Fig. 1) of radius 12 cm, with the center of the circle coinciding with the centre of
the object to be scanned. A set of Nt = 32 transmitter antennas are used to excite the breast phantom,
and a set of Nr = 32 receiver antennas are assumed to collect the back scattered fields. The object
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to be imaged is confined within a square domain of size 10 cm and is excited with a Gaussian pulse
of frequency ranging from 3 GHz to 4GHz. By solving the forward problem, the back-scattered fields
are generated with a size of Nt × Nr. The simulation is then repeated for L number of frequencies.
Hence, the total size of the scattered data is L×Nt×Nr. The number of discrete frequency points used
for excitation is chosen as L = 20. This data is given as the input to the proposed RwBP algorithm.
The algorithm uses Haar wavelet for the sparse transformation, and the values of error limit and rate
parameter are selected as η = 10−3 and β = 10−1.

In the ideal scenario, the RwBP algorithm works on the scattered data and produces perfectly
reconstructed images which exactly match the input profile. However, in a real-time scenario, random
events such as discrete nature of radiation, variation in detector sensitivity, faults in the measuring
device, environmental errors (due to factors like stray magnetic fields, vibration, etc.), and errors
introduced by the experimenter are always present, and hence, its effect has to be considered. Usually
an additive Gaussian noise is added to simulate such kinds of noise, and hence a 30 dB Gaussian noise
has been added to the scattered data before inverse profiling [21]. The reconstructed images thereby
obtained are shown in Figs. 3(a) & (b). The figure clearly shows that RwBP is able to detect both the
tumours and the glandular inclusions correctly.

(a) real part-RwBP (b) imaginary part-RwBP (c) real part-TV Regularization (d) imaginary part-TV norm

Figure 3. (a) The permittivity profile ε′ and (b) the conductivity profile ε′′ using RwBP method and
(c) the permittivity profile ε′ and (d) the conductivity profile ε′′ using TV regularization method.

For a fair comparison, the results of the proposed method are compared with the profile
reconstructed by Total Variation regularization method (TV norm) [19]. Figs. 3(c) & (d) show the
reconstructed profile in the presence of 30 dB noise. It can be noted from Fig. 3 that both the methods
are able to detect the tumors as well as fibro-glandular inclusions. The proposed technique is visibly
seen to have a a better edge than TV regularisation. To precisely evaluate both the techniques, the Root
Mean Square Error (RMSE) is computed and compared. Table 2 shows the RMSE values evaluated for
the proposed method and the method described in [19] in the frequency range of 3–4 GHz. The dielectric
and conductivity values of the tumor tissues have been reconstructed with a higher accuracy by RwBP
as compared to TV norm. Additionally, RwBP is able to reconstruct the fibroglandular inclusions
clearly whereas TV norm fails to do so (as seen in Fig. 3). This is because TV regularization produces

Table 2. RMSE value of the reconstructed profiles for TV regularization method and the Re-weighted
Basic Pursuit method.

Breast Model Method Relative permitivity ε RMSE Conductivity σ RMSE
Tumor TV regularization 39.15 0.850 3.71 0.290

ε = 40, σ = 4.0 RwBP 39.29 0.710 4.31 0.310
Breast tissue TV regularization 7.53 1.470 0.318 0.085

ε = 09, σ = 0.40 RwBP 8.35 0.650 0.427 0.027
Glandular tissue TV regularization 09.63 1.370 0.329 0.121
ε = 11, σ = 0.045 RwBP 10.31 0.690 0.424 0.026
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Table 3. Accuracy of localization and size estimation for TV regularization method and the Re-weighted
Basic Pursuit method.

Breast Model
(x, y)

Method
Centroid of Inclusions

(x, y) in (mm)
RMSE

Estimated
diameter (mm)

Error

Tumor A TV regularization (−0.32, 3.12) 0.408 6.27 0.27
(0.0, 3.0) RwBP (−0.32, 2.95) 0.401 5.94 −0.06
Tumor B TV regularization (1.41, −2.62) 0.487 5.78 −0.22
(1.5,−2.5) RwBP (1.43, −2.62) 0.476 5.93 −0.07

Glandular tissue A TV regularization (1.94, 3.14) 0.199 5.54 4.46
(2.0, 3.0) RwBP (2.08, 3.12) 0.217 9.64 0.36

Glandular tissue B TV regularization (−1.43,−0.61) 2.18 12.18 0.121
(−1.5,−0.5) RwBP (−1.45,−0.43) 0.165 9.48 0.52

an over-smoothness at the edges and blurs them, which in turn gives an over-estimate of the size of the
given object [29] and makes it harder to differentiate the boundary between different types of tissues.
The proposed method preserves these sharp edges, and hence the fibro-glandular tissues with a smaller
difference in the contrast value can be easily identified even in the presence of noise. Furthermore, from
Table 3, another point observed is that the diameters of the reconstructed inclusions in the case of TV
norm are larger and result in the extension of the tumors and fibro-glandular inclusions to sizes much
larger than that of the input profile. The better tumor localization produced by RwBP that combines
the sparsity approach with the weighted minimization verifies the feasibility of the proposed method.

In addition to the above analysis, the effect of noise on the reconstruction produced by both the
methods is analyzed and plotted in Fig. 4. From the figure, it can be inferred that for all noise levels,
the proposed technique produces a better reconstruction quality as compared to [19]. When the noise
level is increased to 25 dB, the proposed technique has a maximum reduction in error as compared to
TV norm with an RMSE value of only 0.083 as against 0.32 in the case of TV norm. Thereafter, the
difference in error gradually decreases when noise is further increased to 20 dB.

Figure 4. RMSE (%) of the reconstructed profile for different noise levels.

To study the effect of varying levels of noise on the convergence produced by the algorithm, the
RMSE has been plotted against the number of iterations in Fig. 5 for different noise levels from 25–
40 dB in steps of 5 dB. The algorithm iterates until there is no significant variation between the current
and the previous dielectric values. From the figure, it can be inferred that for SNR levels of 25 dB or
higher, the solution converges within 12 iterations, and an optimal object profile is reconstructed with
an acceptable amount of error. Noise levels as high as 25 dB do not pose a challenge for RwBP to
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Figure 5. Convergence characteristics.

arrive at the solution. However, it was also observed that when the noise level was increased to 20 dB,
the process got stuck at some local minima, and it diverged without giving the desired result after 5
iterations were completed.

This preliminary theoretical analysis suggests that the RwBP algorithm offers better-reconstructed
images with few artifacts in the background and small errors in the inner structures of the breast
phantom even at noise levels as high as 30 dB. The simulation results obtained were thereafter validated
using an experimental study which is discussed in Section 3.1.

3.1. Experimental Validation

In this section, the proposed technique is validated experimentally on a cylindrical phantom.
Measurements were conducted inside an anechoic chamber in order to avoid excessive reflection from the
environment. The schematic of the measurement setup is shown in Fig. 6(a). The current setup consists
of both transmitter and receiver antennas in a multi-static arrangement, a network analyser, a turntable,
and a personal computer to remotely control the measurement procedure. The computer coordinates
the motion of the stepper motor and the process of data acquisition from each transmitter position.
The transmitting antenna used to illuminate the phantom is a standard horn antenna operating in the
frequency range 2 GHz to 18 GHz. The receiver antenna used here is an egg-shaped UWB antenna
reported in [31]. To achieve a multi-static arrangement, a single receiver antenna is rotated and is
successively placed at 36 positions around the object during the experiment. In this way, a mono-static
arrangement can be utilised to perform a multi-static imaging procedure.

(a) (b)

Figure 6. Experimental setup. (a) Flow diagram of the experimental setup. (b) Radial cross section
and axial cross section of the cylindrical phantom with dimensions.
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Imaging is performed on a phantom with a cylindrical geometry made of Delrin ( R©Dupont) with a
relative permittivity of (εr = 3.7). Three inclusions of diameters 10 mm, 6 mm, and 3 mm made of PVC
(εr = 4.8) are embedded in the phantom as shown in Fig. 6(b). Materials for phantom and inclusions
are selected on the basis of local availability, manufacturing facilities, and sufficient dielectric contrast
to mimic early stage malignancies. The materials selected have stable dielectric permittivity over time.
The inclusions are eccentrically placed at random radial distances. The total length of the solid cylinder
is 15 cm, and the inclusions in their respective radial positions are of height 10 cm.

The egg-shaped antenna used as the receiver is designed to operate in the UWB band and is
fabricated on an FR4 substrate. The measured impedance bandwidth of the antenna is from 3.06 GHz
to 20 GHz. The antenna is excited with a UWB pulse of the form V (t) = V0(t − t0)e(t−t0)2/r2

[30].
The cylindrical phantom is mounted on a rotating turn-table controlled by a DC stepper motor. For
a particular illumination angle of the transmitting antenna, one total rotation of the turn table is
performed with measurements at 36 receiver points (M) with 10 degree angular separation. Proximity
of the receiver antenna and its form factor for positioning the antenna at close angles around the
specimen are critical to the measurement. The PNAE 8362B Agilent Network Analyser is used to
measure the complex transmission parameter S21 (dB) in the UWB band at 201 discrete frequency
points in the frequency band of 3 GHz to 12 GHz.

Experimental scattered data available in [31], in the range of 3GHz to 4GHz, are used to perform
the reconstruction process. The reconstruction is done for 20 discrete frequencies. Image reconstruction
of the dielectric profile of the phantom was carried out using the proposed method that combines DBIM
algorithm and the proposed RwBP technique with a resolution of 61 × 61 pixels. The reconstructed
images for various frequencies from 3GHz to 4GHz were accumulated to produce the final cross section
of the phantom as shown in Fig. 7(a). These results are compared to the reconstruction results reported
in [31] (Fig. 7(b)). In the previous work reported in [31], the inclusions of 10 mm and 6mm diameters
were only localized in the reconstructed images, while the inclusion of 3 mm was not discernible. On
the other hand, when the reconstruction is performed using the proposed method, it is noted that
all the three inclusions are localized, and the relative sizes of the inclusions can be determined as
well. Table 4 shows the accuracy of localization for the proposed method, and it is compared with the

(a) RwBP (b) [30]

Figure 7. The reconstructed object profile in (a) RwBP method and using (b) [31].

Table 4. Comparison of localization and estimated diameter using Re-weighted Basic Pursuit and the
method proposed in [31].

Breast

Model

Inclusion 1, diameter = 10 mm Inclusion 2, diameter = 6mm Inclusion 3, diameter = 3mm

Location Error estimated Location Error estimated Location Error estimated

(−1.5,−1.5) diameter (2.5, 2.5) diameter (−2, 4) diameter

RwBP (-1.505,-1.515) 0.1118 8.32 (2.48, 2.50) 0.0141 3.8 (−1.97, 4.012) 0.0228 1.9

Ref. [31] (−1.515,−1.525) 1.67 13.4 (2.453, 2.451) 1.93 12.4 Not detected Nil Nil
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method proposed in [31]. The improved tumor localization as compared to [31] verifies the feasibility
of the proposed method.

4. CONCLUSION

A quantitative method for reconstructing the dielectric contrast profile of the scatterer in a breast
imaging setup is proposed and implemented using the compressive sensing framework. The proposed
method combines the DBIM with the Re-weighted Basic Pursuit algorithm for solving the inverse
ill-posed problem. The proposed method is able to extract the quantitative information about the
size, shape, location, and dielectric profiling of the tissue inclusions using an iterative reconstruction
framework within microwave tomography. The method produces a significant reduction in the
reconstruction error as compared to the TV norm method with an RMSE value of only 0.083 as against
0.32 in the case of TV norm in the presence of 25 dB noise. The technique was validated experimentally,
and it was observed that for the object profile used for imaging, all the three inclusions were localized,
and the relative sizes of the inclusions were determined as well. Accuracy in estimating the quantitative
information like localization, size, and shape was high compared with previously published works.
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