Vol. 93
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-09-01
A Novel Miniaturized UWB Bandpass Filter Basing on E-Shaped Defected Microstrip Structure
By
Progress In Electromagnetics Research Letters, Vol. 93, 49-57, 2020
Abstract
This paper proposes a novel miniaturized UWB bandpass filter by cascading two miniaturized low-pass and high-pass modules. On account of the slow wave and stopband characteristic of defected microstrip structure (DMS), an E-shaped DMS with low-pass characteristic is presented, and an RLC equivalent circuit is utilized to analyze it. By three-dimensional electromagnetic modeling , the S parameters can be obtained to extract the initial parameter values of the RLC equivalent circuit and verify the validity of equivalent circuit in Advanced Design System. The high-pass module uses a lump element to reduce the circuit dimension. The high frequency selectivity can be achieved by loading L-shaped stubs, which produces one transmission zero at the upper band of passband and has a good rectangle coefficient of 1.2 (25 dB-bandwidth/3 dB-bandwidth). To verify the idea, a compact UWB bandpass filter is simulated and fabricated. The result shows that the passband range is 3.1-10.6 GHz with 1 dB loss, and the measurement has a good agreement with the simulation. Besides, a notched wave working in X wave band can also be generated. Compared with the previous works, this UWB bandpass filter has the advantages of miniature and high selectivity.
Citation
Lichang Huang, Minquan Li, Pingjuan Zhang, Kaiyue Duan, and Yawen Song, "A Novel Miniaturized UWB Bandpass Filter Basing on E-Shaped Defected Microstrip Structure," Progress In Electromagnetics Research Letters, Vol. 93, 49-57, 2020.
doi:10.2528/PIERL20062601
References

1. Wei, F., et al., "Compact UWB bandpass filter with triple-notched bands using triple-mode stepped impedance resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 10, 512-514, 2012.
doi:10.1109/LMWC.2012.2215845

2. Kamma, A., et al., "Multi mode resonators based triple band notch UWB filter," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 2, 120-122, 2017.
doi:10.1109/LMWC.2017.2649383

3. Kumar, S., R. D. Gupta, and M. S. Parihar, "Multiple band notched filter using C-shaped and E-shaped resonator for UWB applications," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 5, 340-342, 2016.
doi:10.1109/LMWC.2016.2549700

4. Zhang, X. Y., Y. W. Zhang, and Q. Xue, "Compact band-notched UWB filter using parallel resonators with a dielectric overlay," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 5, 252-254, 2013.
doi:10.1109/LMWC.2013.2255121

5. Xu, J., et al., "Compact UWB bandpass filter with a notched band using radial stub loaded resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 7, 351-353, 2012.
doi:10.1109/LMWC.2012.2201930

6. Shang, Z., et al., "Design of a superconducting Ultra-Wideband (UWB) bandpass filter with sharp rejection skirts and miniaturized size," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 2, 72-74, 2013.
doi:10.1109/LMWC.2013.2239633

7. Li, X. and X. Ji, "Novel compact UWB bandpass filters design with cross-coupling between λ/4 short-circuited stubs," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 1, 23-25, 2014.
doi:10.1109/LMWC.2013.2287231

8. Xia, X., X. Cheng, F. Chen, and X. Deng, "Compact UWB bandpass filter with sharp roll-off using APCL structure," Electronics Letters, Vol. 54, No. 13, 837-839, June 28, 2018.
doi:10.1049/el.2018.1151

9. Zhou, C., P. Guo, K. Zhou, and W. Wu, "Design of a compact UWB filter with high selectivity and superwide stopband," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 636-638, July 2017.
doi:10.1109/LMWC.2017.2711509

10. Aliqab, K. and J. Hong, "Wideband differential-mode bandpass filters with stopband and common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 3, 233-236, March 2020.
doi:10.1109/LMWC.2020.2968769

11. Hao, Z. C. and J. S. Hong, "UWB bandpass filter using cascaded miniature high-pass and low-pass filters with multilayer liquid crystal polymer technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 4, 941-948, 2010.
doi:10.1109/TMTT.2010.2042632

12. Hao, Z.-C. and J.-S. Hong, "Quasi-elliptic UWB bandpass filter using multilayer liquid crystal polymer technology," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 4, 202-204, 2010.
doi:10.1109/LMWC.2010.2042551

13. Sarkar, P., et al., "Compact UWB bandpass filter with dual notch bands using open circuited stubs," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 9, 453-455, 2012.
doi:10.1109/LMWC.2012.2210395

14. Lin, W. J., et al., "Investigation in open circuited metal lines embedded in defected ground structure and its applications to UWB filters," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 3, 148-150, 2010.
doi:10.1109/LMWC.2010.2040213

15. Zhao, J., et al., "Compact microstrip UWB bandpass filter with dual notched bands using E-shaped resonator," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 638-640, 2013.
doi:10.1109/LMWC.2013.2283873

16. Yun, Y. C., et al., "Optimal design of a compact filter for UWB applications using an improved particle swarm optimization," IEEE Transactions on Magnetics, Vol. 52, No. 3, 1-4, 2016.
doi:10.1109/TMAG.2015.2486141

17. Xiao, J. K. and Y. F. Zhu, "Multi-band bandstop filter using inner T-shaped Defected Microstrip Structure (DMS)," AEU International Journal of Electronics & Communications, Vol. 68, No. 2, 90-96, 2014.
doi:10.1016/j.aeue.2013.07.002

18. Kazerooni, M., M. A. Salari, A. Cheldavi, and M. Kamarei, "Analysis and modelling of novel band stop and band pass millimeter wave filters using defected microstrip structure (DMS)," 2009 First Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), 1-4, Tehran, 2009.

19. La, D., Y. Lu, and S. Sun, "Novel bandstop filter using dual-U shape defected microstrip structure," 2010 International Symposium on Signals, Systems and Electronics, 1-3, Nanjing, 2010.

20. La, D., et al., "A novel compact bandstop filter using defected microstrip structure," Microwave & Optical Technology Letters, Vol. 53, No. 2, 433-435, 2011.
doi:10.1002/mop.25708

21. Zheng, X., "Dual UWB bandstop filter based on M-shaped defected microstrip structure," 2017 Progress In Electromagnetics Research Symposium — Spring (PIERS), St. Petersburg, Russia, May 22–25, 2017.

22. Xiao, J. K., et al., "Controllable miniature tri-band bandpass filter using defected microstrip structure," Electronics Letters, Vol. 50, No. 21, 1534-1536, 2014.
doi:10.1049/el.2014.1432

23. Moyra, T., "Performance improvement of parallel coupled band-pass filter using defected microstrip structure," IJCA Proceedings on International Conference on Communication, Circuits and Systems 2012, 2013.

24. Fallahzadeh, S., A. Akbarzadeh, and M. Tayarani, "Spurious response suppression in microstrip bandpass filters using defected microstrip structures," Electromagnetics, Vol. 32, No. 7, 389-400, 2012.
doi:10.1080/02726343.2012.716680

25. Wang, Y., T. Jiang, and Y. Li, "A miniaturized ultra-wideband band-pass filter with narrowband anti-interference characteristics," 2015 Asia-Pacific Microwave Conference (APMC), IEEE, 2015.

26. Firmansyah, T., G. Wibisono, and E. T. Rahardjo, "Compact UWB bandpass filter based on crossed dumbbell-stub with notch band using defected microstrip structure," 2019 16th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, 1-5, Padang, Indonesia, 2019.

27. Fallahzadeh, S. and M. Tayarani, "A new microstrip UWB bandpass filter using defected microstrip structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 893-902, 2010.
doi:10.1163/156939310791285254