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A Novel Miniaturized UWB Bandpass Filter Basing on E-Shaped
Defected Microstrip Structure
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Abstract—This paper proposes a novel miniaturized UWB bandpass filter by cascading two
miniaturized low-pass and high-pass modules. On account of the slow wave and stopband characteristic
of defected microstrip structure(DMS), an E-shaped DMS with low-pass characteristic is presented, and
an RLC equivalent circuit is utilized to analyze it. By three-dimensional electromagnetic modeling, the
S parameters can be obtained to extract the initial parameter values of the RLC equivalent circuit and
verify the validity of equivalent circuit in Advanced Design System. The high-pass module uses a lump
element to reduce the circuit dimension. The high frequency selectivity can be achieved by loading
L-shaped stubs, which produces one transmission zero at the upper band of passband and has a good
rectangle coefficient of 1.2 (25 dB-bandwidth/3 dB-bandwidth ). To verify the idea, a compact UWB
bandpass filter is simulated and fabricated. The result shows that the passband range is 3.1–10.6 GHz
with 1 dB loss, and the measurement has a good agreement with the simulation. Besides, a notched
wave working in X wave band can also be generated. Compared with the previous works, this UWB
bandpass filter has the advantages of miniature and high selectivity.

1. INTRODUCTION

Since the Federal Communications Commission announced the ultra-wideband (UWB) frequency (3.1–
10.6 GHz), the study of UWB technology has become more and more popular. Filter is an important
component of Wireless Communication Systems; therefore, the research on UWB bandpass filter (BPF)
also attracts attention from many researchers. Recently, there are several main UWB technologies as
follows: Firstly, two transmission zeroes at the lower and upper bands are generated by loading short-
circuit or open-circuit resonators, and coupling multimode resonator is also a common technology,
which puts multiple resonant modes together to form a UWB [1–9]. A quintuple-mode UWB BPF
is presented, which has a great frequency selectivity by loading open and short stubs at asymmetric
parallel-coupled lines in [8], but it has larger size of 0.645λg × 0.318λg at 6.85 GHz. In [9], a UWB
filter with high selectivity and ultra-wide stopband is proposed by loading fan-shaped stubs, and the
size is 0.60λg ×0.54λg . Secondly, a compact differential UWB bandpass filter is presented in [10], which
utilizes difference-mode and common-mode to form the passband and stopband, respectively. Thirdly,
multilayer liquid crystal polymer technology is also used to design a UWB bandpass filter [11, 12].
Then, UWB bandpass filter usually uses a defected ground structure (DGS) that a specific defected
structure is etched in the ground of a microstrip structure with low-pass or high-pass characteristic,
which produces a attenuation pole at the lower or upper bands to create a UWB [13, 14]. In [13], a
highpass filter is given and suppresses the upper-band harmonics by etching a SIR-shaped DGS, and the
dimension of the proposed filter is 22× 10 mm2. Finally, some algorithms are also used to calculate the
electrical parameter of the circuit, and then the UWB bandpass filter can be designed [15, 16]. Above
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all, these filters have a good UWB characteristic, but their sizes are still large. This paper presents a
novel miniaturized UWB bandpass filter with a little smaller size.

Because the defected ground structure easily causes power leakage, which affects the other
components of integrated circuit system, the defected microstrip structure (DMS) appears. Since the
DMS is proposed, it gets extensive application especially in the filter designing. The DMS is used
to design stopband filter [17–21], bandpass filter [22], suppress spurious response [23, 24], notch band
[25, 26], UWB bandpass filter [27]. Because there is little study on a UWB BPF based on DMS only
and the dimension of a UWB bandpass filter is a bit larger than the DMS UWB bandpass filter, a
miniaturized UWB bandpass filter based on an E-shaped DMS is proposed in this paper. In order to
remove undesired signal, a notch band operating on X wave band can be achieved, and the location of
the notch band can be controlled by adjusting the length of the stub.

2. DESIGN AND ANALYSIS

2.1. E-Shaped Defected Microstrip Structure

The new E-shaped DMS is presented in Figure 1(a), which etches an E-shaped slot on the microstrip
line. The E-shaped slot changes the current path and increases the length of current path. In addition,
because of the additional inductive effect of an E-shaped slot, the E-shaped DMS has the characteristic
of stopband and slow wave. In Figure 1(b), an RLC equivalent circuit is used to analyze the E-shaped
DMS, and the circuit parameters refer to [24]. The ABCD matrix is utilized to derive it and the matrix
equation as follows:[
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where ZG = ZL = Z0, Y = 1/R + j(ωC − 1/(ωL)), Z0 is the port impedance.

(a) (b)

Figure 1. (a) E-shaped DMS, (b) The equivalent RLC circuit of E-shaped DMS.

Because the DMS has a band-stop response, the transfer function can be described as:
S21 (ω) = 2Z0/(2Z0 + 1/Y ) (2)

When the RLC circuit is resonant, the electric field energy is equal to magnetic energy, Z = 1/Y =
R; therefore, the R value can be obtained

R = 2Z0 (1/|S21 (ω)| − 1) /f = fr (3)
According to Q = ωrCR and BW = fr/Q, the C value can be realized. Meanwhile, the L value

can also be generated from Equation (5).
C = 1/(2πR ∗ BW ) (4)

fr = 1/
(
2π

√
LC

)
(5)
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1

(2πfr)2 C
(6)
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where fr is the resonant frequency, and BW is the −25 dB bandwidth of S21/f = fr, but the sideband
selectivity of band-stop response is not great. According to the above equation, we can know that the
quality factor is proportional to the C value. So, a correction faction δ is introduced to freely adjust
the sideband selectivity, as Equation (7):

C =
1

2πR ∗ BW
(1 + δ) (7)

In this study, the S parameters can be extracted by three-dimensional electromagnetic modeling.
The simulation result shows that S21/f = fr is −32 dB, and the −25 dB bandwidth is 0.4 GHz. In
Figure 2(a), it is shown that the sideband becomes sharp with the increase of δ, but the sideband
cannot be too sharp, which affects the next out-of-band rejection. Therefore, according to Equations (3),
(4), (6), (7), the initial parameter value can be calculated as: R = 3881Ω, δ = 1.5, C = 0.2500 pF,
L = 1.0132 nH. In order to verify the validity of equivalent circuit, the circuit is simulated by Advanced
Design System. And the circuit response and full-wave simulation results are depicted in Figure 2(b),
which demonstrates that the circuit response has a good agreement with full-wave simulation.

(a) (b)

Figure 2. (a) Sweeping the parameter δ. (b) The circuit response and full-wave simulation results.

To research the relation between E-shaped DMS parameters and electrical property, some
parameters are studied and analyzed. From Figure 3(a), with the increase of L1, the additional
inductance gets larger, hence, the resonant frequency moves to lower frequency. Figure 3(b) displays that
the additional capacitance becomes smaller with the growth of W2; therefore, the resonant frequency
moves to upper frequency. In Figure 3(c), the additional effect shows a inductance characteristic with
the augment of W1. So, the resonant characteristic also moves to lower frequency.

According to aforementioned analysis, we can adjust several main parameters to control the
resonant characteristic. Finally, an E-shaped DMS with low-pass characteristic is presented, which
serves as an important module of the UWB bandpass filter. The simulation result is demonstrated in
Figure 4.

2.2. Semi-Lumped High-Pass Module

In this paper, a third order Chebyshev high-pass filter is chosen. By looking up information, normalized
low-pass element values can be confirmed: g1 = g3 = 1.0315, g2 = 1.1474. The high-pass filter can
be achieved by transforming a normalized low-pass prototype, and the lump prototype is presented in
Figure 5(a). The shunt inductance can be transformed to a short-circuit microstrip line, as follows:

l =
11.81L
Z0

√
εr

(8)
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(a) (b) (c)

Figure 3. The resonant characteristic of E-shaped DMS.

Figure 4. Frequency response of E-shaped DMS.

(a) (b)

Figure 5. (a) The topological structure of high-pass module. (b) Semi-lumped high-pass module.

where l is the length of microstrip line (unit: inch), and L is inductance value (unit: nH).
In design, a Murata GRM18 SMD capacitor of 0.5 pF is used to miniaturize the size of UWB

bandpass filter, and the semi-lumped structure is given in Figure 5(b).
Then, the semi-lumped model can be simulated and optimized by ADS software, and the simulation

result is shown in Figure 6.
The miniaturized UWB bandpass filter can be realized by cascading the E-shaped DMS with a

semi-lumped module.
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Figure 6. Frequency response of semi-lumped high-pass module.

3. SIMULATION RESULTS AND MEASUREMENT

To verify this approach, the miniaturized UWB bandpass filter is simulated and implemented on a
0.508 mm-thick Rogers Ro5880 substrate which has a loss tangent of 0.0009 and relative dielectric
constant εr of 2.2.

3.1. Simulation Results

The microstrip structure of the UWB bandpass filter is presented in Figure 7, and the physical
parameters are exhibited in Table 1. Compared with previous works, the UWB bandpass filter has
a smaller size with 12.6mm ∗ 8.3mm (0.4λg × 0.26λg) and great return loss above 22 dB. There is a
systematic comparison in Table 2.

Figure 7. The general structure of miniaturized UWB bandpass filter.

The final simulation result is given in Figure 8. It is shown that the passband range is 3.1–10.6 GHz,
and the frequency selectivity is also great.

Besides, with the total dimension being almost the same, a notched band is generated by adding an
L-shaped resonator. By controlling the length of the L-shaped resonator, the notched wave can operate
on X band, and the parameter-sweep result is demonstrated in Figure 9.
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Table 1. Physical parameters of miniaturized UWB bandpass filter (unit: mm).

L1 W1 L2 W2 L3 W3 L4 D L6 W7 R1
0.8 1.3 1.6 0.2 0.8 2.1 0.2 1.1 7.2 0.6 0.4
L7 W6 L9 W9 L10 L11 W11 L12 W12 R2
1 1.2 5.2 0.3 4 1.6 1.6 2 3.2 0.15

Table 2. Comparison of various UWB bandpass filter.

Reference
Return Loss

(dB)
Size (λg × λg),
at 6.85 GHz

Upper Stopband
(GHz)

Roll off rate/GHz
Lower, Upper

[6] >= 15 0.89 × 0.21 14 83.33 dB, 100 dB
[8] >= 12 0.645 × 0.318 17 50 dB, 16.67 dB
[9] >= 17 0.60 × 0.54 15 55.56 dB, 22.73 dB
[10] >= 16 0.93 × 1.06 14 19.23 dB, 13.89 dB
[13] >= 15 0.63 × 0.31 25 5.66 dB, 15 dB
[15] >= 17 0.92 × 0.47 14 10 dB, 31.25 dB
[16] >= 15 0.59 × 0.63 20 10 dB, 7.5 dB
[26] >= 16 0.42 × 0.84 13 35.71 dB, 25 dB
[27] >= 12 1.4 × 0.07 16 13.79 dB, 15.38 dB

This Work >= 22 0.4 × 0.26 18 16.66 dB, 23.8 dB

Figure 8. Frequency response of miniaturized UWB bandpass filter.

3.2. Measurement and Analysis

To validate this idea, a miniaturized UWB BPF has been fabricated and tested shown in Figure 10(a) and
Figures 10(b), (c), respectively. In Figure 10(c), we can know that group delay is better than 0.6 ns in the
whole passband. In Figure 10(b), it is shown that the return loss is better than 12 dB, and the insertion
loss is better than 2.6 dB. Due to mismatching tolerance and parasitic effect of soldering, the return loss
becomes worse than simulation result. Moreover, a chip capacitor that has good characteristic at high
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Figure 9. Frequency response of miniaturized UWB bandpass filter with a notch band.

(a) (b) (c)

Figure 10. (a) Fabricated prototype. (b) Measurement result. (c) Group delay.

frequency is utilized to reduce the circuit size, but it has a parasitic resistance and welding parasitic
capacitance. Therefore, the insertion loss gets a little larger. As the capacitance value gets larger,
the lower sideband of passband moves to lower frequency, and the matching degree becomes worse.
Although the measurement results are a little different from simulation, it is acceptable. Besides, we
can find that the stopband attenuation is better than simulation, because the parasitic resistance is
larger at high frequency.

4. CONCLUSION

In this letter, a novel miniaturized UWB bandpass filter based on an E-shaped DMS is proposed.
Firstly, the E-shaped DMS is designed and analyzed by using an equivalent circuit. Then, a semi-
lumped high-pass module is designed in order to father decrease the dimension. Finally, a miniaturized
UWB bandpass filter is designed and fabricated by cascading the E-shaped DMS and semi-lumped
high-pass module. The result shows that this approach is right, and it has smaller size and great return
loss compared with previous works.
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