Vol. 93
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-08-31
A Low-Parasitic CMOS Transistor Structure for Wide Locking Range ILFD Design
By
Progress In Electromagnetics Research Letters, Vol. 93, 43-47, 2020
Abstract
A wide locking range injection locked frequency divider (ILFD) with a low power consumption for 60GHz applications is presented. The locking range of the ILFD is enhanced by reducing the parasitic capacitances of the transistors. The cross-coupled transistor and injected transistors are integrated to become a compact structure, which exhibits simple routing and induces less parasitic capacitances. To verify the proposed structure, the ILFD was fabricated using 65 nm CMOS technology. It has a measured locking range of 55.3 GHz to 67 GHz (19%) with 0 dBm input power. The circuit dissipates 1.98 mW at 0.5 V supply voltage without the output buffers.
Citation
Hai Feng Zhou, Kam-Man Shum, and Chi Hou Chan, "A Low-Parasitic CMOS Transistor Structure for Wide Locking Range ILFD Design," Progress In Electromagnetics Research Letters, Vol. 93, 43-47, 2020.
doi:10.2528/PIERL20061501
References

1. Fernandez-Garcia, M., S. Ver-Hoeye, C. Vazquez-Antuna, G. R. Hotopan, R. Camblor-Diaz, and F. Las Heras Andres, "Non linear optimization technique for the reduction of the frequency scanning effect in a phased array based on broad-band injection-locked third harmonic self-oscillating mixers," Progress In Electromagnetics Research, Vol. 127, 479-499, 2012.
doi:10.2528/PIER12020606

2. Chien, J. C. and L. H. Lu, "40 GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS," IEEE Int. Solid-State Circuits Conf. (ISSCC), 544-545, San Francisco, CA, USA, 2007.

3. Yamamoto, K. and M. Fujishima, "70 GHz CMOS harmonic injection-locked divider," IEEE Int. Solid-State Circuits Conf. (ISSCC), 2472-2481, San Francisco, CA, USA, 2006.

4. Jang, S. L. and C. F. Lee, "A wide locking range LC-tank injection locked frequency divider," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 613-615, 2007.
doi:10.1109/LMWC.2007.901796

5. Fu, H., W. Fei, H. Yu, and J. Ren, "A 60.8–67 GHz and 6.3 mW injection-locked frequency divider with switching-inductor loaded transformer in 65 nm CMOS," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 613-615, 2014.

6. Chen, Y. T., M. W Li, T. H. Huang, and H. R. Chuang, "A V-band CMOS direct injection-locked frequency divider using forward body bias technology," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 7, 396-398, 2010.
doi:10.1109/LMWC.2010.2049436

7. Li, A., S. Zheng, J. Yin, et al. "A 21–48 GHz subharmonic injection-locked fractional-N frequency synthesizer for multiband point-to-point backhaul communications," IEEE Journal of Solid-State Circuits, Vol. 49, No. 8, 1785-1799, 2014.
doi:10.1109/JSSC.2014.2320952

8. Chao, Y. and H. C. Luong, "Analysis and design of a 2.9-mW 53.4–79.4-GHz frequency-tracking injection-locked frequency divider in 65-nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 48, No. 10, 2403-2418, 2013.
doi:10.1109/JSSC.2013.2272371

9. Rategh, H. R. and T. H. Lee, "Super-harmonic injection-locked frequency divider," IEEE Journal of Solid-State Circuits, Vol. 34, No. 6, 813-821, 1999.
doi:10.1109/4.766815

10. Lee, I. Y., S. J. Yun, S. M. Oh, and S. G. Lee, "A low-parasitic and common-centroid cross-coupled CMOS transistor structor for high-frequency VCO design," IEEE Electron Device Letters, Vol. 30, No. 5, 532-534, 2009.
doi:10.1109/LED.2009.2017213