Vol. 92
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-07-05
Nonuniform Electromagnetic Field at the Interface Between Dielectric and Conducting Media
By
Progress In Electromagnetics Research Letters, Vol. 92, 101-107, 2020
Abstract
The study of the electromagnetic field, taking into account eddy currents in the conductive half-space, is based on the exact analytical solution of the general three-dimensional quasi-stationary problem. The mathematical model includes an approximate solution using asymptotic expansion in the case of strong skin effect. Analytical expressions are obtained for the electric and magnetic fields at a flat interface in the form of limited asymptotic series, each term of which is expressed through a known field of external sources. The expressions take into account the nonuniformity of the field near the surface, since they contain its derivatives with respect to the coordinate. The series expansion was carried out according to a small parameter, which is proportional to the ratio of the field penetration depth to the distance between the interface and the sources of the external field. The found expressions generalize the approximate boundary impedance condition for the case of the penetration of nonuniform electromagnetic field into conductive medium.
Citation
Yuriy Vasetsky, "Nonuniform Electromagnetic Field at the Interface Between Dielectric and Conducting Media," Progress In Electromagnetics Research Letters, Vol. 92, 101-107, 2020.
doi:10.2528/PIERL20050802
References

1. Babutsky, A., A. Chrysanthou, and J. Ioannou, "Influence of pulsed electric current treatment on corrosion of metals," Strength of Materials, Vol. 41, No. 4, 387-391, 2009.
doi:10.1007/s11223-009-9142-3

2. Batygin, Yu. V., S. F. Golovashchenko, and A. V. Gnatov, "Pulsed electromagnetic attraction of nonmagnetic sheet," Journal of Materials Processing Technology, Vol. 214, No. 2, 390-401, 2014.
doi:10.1016/j.jmatprotec.2013.09.018

3. Acero, J., R. Alonso, J. M. Burdio, L. A. Barragan, and D. Puyal, "Analytical equivalent impedance for a planar induction heating system," IEEE Transaction on Magnetics, Vol. 42, No. 1, 84-86, 2006.
doi:10.1109/TMAG.2005.854443

4. Rudnev, V., D. Loveless, R. Cook, and M. Black, Handbook of Induction Heating, Taylor & Francis Ltd, 2017.
doi:10.1201/9781315117485

5. Leontovich, M. A., "On the approximate boundary conditions for electromagnetic field on the surface of highly conducting bodies," Propagation of Electromagnetic Waves, USSR Academy of Sciences Publ., Moscow-Leningrad, USSR, 1948 (in Russian).

6. Fridman, B. E., "Skin effect in massive conductors used in pulsed electrical devices: I. Electromagnetic field of massive conductors," Technical Physics, Vol. 47, No. 9, 1112-1119, September 2002.
doi:10.1134/1.1508074

7. Cacciola, M., F. C. Morabito, D. Polimeni, and M. Versaci, "Fuzzy characterization of flawed metallic plates with Eddy current tests," Progress In Electromagnetics Research, Vol. 72, 241-252, 2007.
doi:10.2528/PIER07031301

8. Versaci, M., "Fuzzy approach and Eddy currents NDT/NDE devices in industrial applications," IET Electronics Letters, Vol. 52, No. 11, 943-945, 2016.
doi:10.1049/el.2015.3409

9. Rytov, S. M., "Calculation of skin effect by perturbation method," Journal of Experimental and Theoretical Physics, Vol. 10, No. 2, 180-190, 1940 (in Russian).

10. Kravchenko, A. N., Boundary Characteristics in Electrodynamics Problems, Naukova Dumka, 1989 (in Russian).

11. Berdnik, S. L., D. Y. Penkin, V. A. Katrich, Yu. M. Penkin, and M. V. Nesterenko, "Using the concept of surface impedance in problems of electrodynamics (75 years later)," Radio Physics and Radio Astronomy, Vol. 19, No. 1, 57-80, 2014.
doi:10.15407/rpra19.01.057

12. Vasetskyi, Yu. M. and K. K. Dziuba, "An analytical calculation method of quasi-stationary three-dimensional electromagnetic field created by the arbitrary current contour that located near conducting body," Technical Electrodynamics, No. 5, 7-17, 2017 (in Russian).

13. Vasetsky, Yu. M. and K. K. Dziuba, "Three-dimensional quasi-stationary electromagnetic field generated by arbitrary current contour near conducting body," Technical Electrodynamics, Vol. 1, 3-12, 2018.

14. Vasetsky, Yu., I. Mazurenko, and K. Dziuba, "Conditions for application of asymptotic method to electromagnetic field analysis in system of “a current loop — An electroconducting body”," Computational Problems of Electrical Engineering, Vol. 4, No. 1, 91-96, 2014.