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Nonuniform Electromagnetic Field at the Interface between
Dielectric and Conducting Media

Yuriy Vasetsky*

Abstract—The study of the electromagnetic field, taking into account eddy currents in the conductive
half-space, is based on the exact analytical solution of the general three-dimensional quasi-stationary
problem. The mathematical model includes an approximate solution using asymptotic expansion in
the case of strong skin effect. Analytical expressions are obtained for the electric and magnetic fields
at a flat interface in the form of limited asymptotic series, each term of which is expressed through a
known field of external sources. The expressions take into account the nonuniformity of the field near
the surface, since they contain its derivatives with respect to the coordinate. The series expansion was
carried out according to a small parameter, which is proportional to the ratio of the field penetration
depth to the distance between the interface and the sources of the external field. The found expressions
generalize the approximate boundary impedance condition for the case of the penetration of nonuniform
electromagnetic field into conductive medium.

1. INTRODUCTION

At high frequencies and fast pulse processes, a strong skin effect occurs in conductive bodies, when
the current and electromagnetic field are concentrated in a thin surface layer. Despite the considerable
amount of research devoted to the study of the strong skin effect, the practical needs for the development
of devices with specific field distribution conditions still cause interest in this problem [1–4].

In the case of strong skin effect, the field distribution on the interface is important due to the
possibility of a justified construction of mathematical models. The electromagnetic field on this surface
defines such characteristics as the energy flow of the electromagnetic field into the conductive body, the
surface density of Joule heat release in the surface layer, and the magnetic pressure on the surface of
the body.

More than 70 years ago, Leontovich formulated an approximate impedance boundary condition,
which is valid with a strong skin effect [5]. This condition corresponds to the assumption that locally
an electromagnetic field penetrates into a metal body in the same way as a uniform field penetrates
a conductive half-space. On the surface, only the tangent components of the electric and magnetic
field intensities are non-zero [6]. Deviation from the obtained results may be due to various factors:
nonuniformity of penetrating electromagnetic field, non-planar surface of the conducting body, limited
body size, and the presence of inhomogeneities in metal body, identification of which is also a research
problem [7, 8].

In [9, 10], the theory of surface impedance was constructed for surface of bodies with a double
curvature. A detailed review of works using the concept of surface impedance in electrodynamics
problems, where the geometric and physical properties of real boundary surfaces are taken into account,
is given in [11].
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In most of the cited papers, the problem of diffusion of a nonuniform electromagnetic field into a
conducting medium was formulated with significant restrictions on the depth of field penetration. The
exact solution of the problem for nonuniform field is presented in [6] for a special case of a field excited
by a thin rectilinear conductor with current oriented parallel to the interface of the media. For the
considered nonuniform field, the constraints are shown under which the impedance boundary condition
is valid.

A feature of this study is that it is based on the exact analytical solution obtained for the general
problem of a three-dimensional quasi-stationary field [12, 13]. In particular, the main property of the
formation of electromagnetic field with a flat interface has been established. It consists in the fact
that in a conducting medium the current density and electric field intensity do not contain components
perpendicular to the boundary surface for any system of initial currents and arbitrary dependence of
currents on time. The exact solution allows to also get other general justified results.

The aim of this work is to study the formation of electromagnetic field taking into account its
nonuniformity near flat interface between dielectric and conducting media, obtain explicit expressions
for the electric and magnetic field intensities, and generalize the impedance boundary condition to the
case of diffusion of nonuniform field.

2. MATHEMATICAL MODEL

2.1. Analytical Solution of the General Three-Dimensional Problem

An analytical solution to the linear problem of determining the electromagnetic field generated in a
system containing an arbitrary current contour and a conducting body with a flat surface modeled by
a conducting half-space was obtained in [12, 13]. The solution was obtained without restrictions on
the geometry and orientation of the contour, the electrophysical properties of the medium (electrical
conductivity γi and relative magnetic permeability μi), and the frequency of the field ω. Expressions
for complex-value vector and scalar potentials, electric and magnetic field intensities in both areas are
presented: in the dielectric half-space Ȧe, ϕ̇e, Ėe, Ḣe, where the closed contour l with current İ0 is
located, and in the conducting half-space Ȧi, ϕ̇i, Ėi, Ḣi, where the eddy current with density ji = γiĖi

flows. (As it is often used, the complex-value amplitudes are marked with a dot over the corresponding
symbols). The problem easily extends to the general case of an arbitrary system of contours, that is,
an arbitrary external field and to an arbitrary relation of current as a function of time I0(t) using a
Fourier transform over time.

Expressions for the complex-value amplitudes of potentials in Lorentz’s calibration and the vectors
of field at an arbitrary point of the dielectric half-space are presented as contour integrals
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Potentials and field intensities are determined by single function Ġe
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Figure 1. Geometrical parameters for the element of arbitrary contour l with current İ0 located near
conducting half-space, and the mirror reflection of this contour element from the interface between the
dielectric and the conducting media.

To explain the geometric quantities included in expressions (1)–(5), in Fig. 1 the solid line shows
the element of the initial contour with current I0 located in the upper half-space z > 0. In the lower
half-space z < 0, the dashed line shows the mirror reflection of this contour element from the flat
interface. The vectors t and t1 are unit tangent vectors to the initial contour at point M and to the
mirror reflected contour at point M1. Positions of points M and M1 relative to the observation point Q
are determined by vectors r and r1, respectively. The vector ρ is the projection of vectors r and r1 onto
interface surface xy. The angle β1 shows the orientation of the vector r1 relative to the vertical axis.

Expressions (1)–(5) contain the following notation: ε1 = μi/
(
r1
√

ωμiμ0γ
)

= μiδ/
(√

2r1

)
, where δ

is the penetration depth of a homogeneous field, J0(·) the Bessel function of the first kind of zero order,
ez the unit vector in the z-axis direction, μ0 the permeability of vacuum, and i the imaginary unit. The
dimensionless function w1(χ) in the denominator of the integrand is as follows

w1 (χ) = χ/
√

i +

√
1 +

[
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√
i)
]2

. (6)

The above expressions allow us to determine an electromagnetic field at an arbitrary observation
point at z ≥ 0.

2.2. Asymptotic Approximation for Strong Skin-Effect

Consider the simplification of analytical expressions (1)–(5) in the case of strong skin effect in its
extended formulation, when the penetration depth δ is small not only with respect to the characteristic
body sizes, but also to the size of the entire electromagnetic system, including the distance from the
surface of body to the sources of the external field. In this case, the entered parameter ε1 is small for
non-magnetic media, and with the additional assumption it can be considered small at μ > 1. Under
these conditions, the function Ġe can be represented by an asymptotic series bounded by a certain
number of its terms N [14]
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where an(μi) are the Taylor series coefficients of the function 1/w1 =
∞∑

n=0
an(μi)(χ/

√
i)n.
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Taking into account Eq. (7), expressions (3) and (4) for the electric and magnetic field intensities
are as follows
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Here, ε1r1/
√

i = μi/p, where p =
√

iωμiμ0γi is the propagation constant, and ς = p/γi is the surface
impedance.

Despite the limitations associated with the presence of a small parameter, the approximate solution
in the form of asymptotic series makes it possible to take into account the influence of the nonuniformity
of the external electromagnetic field when it interacts with the conducting medium.

3. NONUNIFORM ELECTROMAGNETIC FIELD AT THE INTERFACE

At points on the surface (z = 0), expressions (1)–(4) are simplified. An even greater simplification can
be obtained in the case of a strong skin effect, when the external field sources are far from the surface
of the conducting body, and accordingly, the parameter ε1 is small. Moreover, the final results allow us
to draw conclusions of some general nature.

3.1. Electric and Magnetic Intensities

The distribution of the electromagnetic field (8), (9) on the surface when ε1 is small is not limited to
members of the asymptotic series, for which the law of penetration of uniform field is valid, which is
usually considered when constructing mathematical models.

First, consider the electric field intensity. On the interface in the dielectric half-space, the first term
in Eq. (8) has only the normal component, which is completely determined by the induced electric field
of external sources [10]. On the contrary, the second term has only the tangential component Ė‖(z = 0).

In turn, the terms of asymptotic series Ė‖(z = 0) in Eq. (8) contain derivatives of the expression for
the magnetic field intensity created by the current contour mirrored from the interface. We transform
the expression in such a way as to have the magnetic field intensity of the initial current flowing in
dielectric medium. Taking into account the relations between the values for the initial and mirror
reflected contours t = t‖ + t⊥, t1 = t‖ − t⊥, r(z = 0) = ρ + zMez, r1(z = 0) = ρ − zMez we have
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Note that the expression
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∮
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dl (11)

represents the magnetic field intensity of the initial current contour. The tangential component of the
field to the surface is Ḣ0‖ = −ez × [ez × Ḣ0].

As a result, the tangent component of the electric field intensity at the interface can be written by
expressing it through the tangent component of the known field of external sources and derivatives of
the field with respect to the coordinate z.
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Based on the principle of superposition, expression (12) will also be valid in the case of an external
magnetic field Ḣ0 created by a system of sources, with the restriction associated with their distance
from the interface.

Similarly, the magnetic field intensity Ḣe = Ḣe1 + Ḣe2 (9) at the interface can be represented as a
limited sum, including the external magnetic field and its derivatives with respect to the coordinate z.

The first term Ḣe1 gives the magnetic field in the dielectric half-space at ideal skin effect, when
δ → 0 and accordingly Ḣe1 has a zero value of the normal component of the magnetic field intensity at
the interface

Ḣe1(z = 0) =
İ0

2π
ez ×

∮
l

ez × (t× r)
r3

dl = 2Ḣ0‖ (z = 0) . (13)

The second term Ḣe2 depends on the electrophysical properties of the medium and field frequency.
In contrast to the electric field intensity, the term Ḣe2 = Ḣ2‖ + Ḣ2⊥ has non-zero both tangential
Ḣ2‖ = −ez × (ez × Ḣe2) and normal Ḣ2⊥ = (ez · Ḣe2)ez components to the interface.

We rewrite Ḣe2 in Eq. (9) in such a way that instead of the magnetic field created by the current
of the mirror reflected contour, we have the magnetic field intensity of the initial current contour. As
before, we take into account the relations between the quantities characterizing the points of the initial
and mirror-reflected contours. As a result, the expression for the tangential component of the magnetic
field intensity takes the form
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∂zn

}∣∣∣∣∣
z=0

. (14)

Here, the terms Ḣe1(z = 0) in Eq. (13) and Ḣ2‖(z = 0) are combined. The numbers n of the asymptotic
series terms are replaced by n + 1; accepting a−1 = −1.

The expression for the normal component of the magnetic field intensity on the surface in the
dielectric half-space takes the form
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Expressions (12), (14), and (15) allow, without solving additional equations, to directly find the
electromagnetic field at the interface, having only the known distribution of the field of external sources
at the boundary. The presence of derivatives indicates that the electromagnetic field on the surface not
only is determined by the value of the field of external sources, but also depends on the nonuniformity
of the external field. This feature is related to the dependence of the distribution law of the induced
field and currents in the conducting medium on the degree of remoteness of the external field sources
compared to the depth of field penetration.

3.2. Impedance Boundary Conditions

Let us now consider the impedance boundary condition, which establishes the relation between the
tangential components of the electric and magnetic field intensities at the interface. We will not impose
a limiting condition for the uniformity of the field at the boundary, which is usually used in mathematical
models.

Let us establish the desired relationship for each term of the asymptotic series of electric

Ė‖(z = 0) =
N∑

n=0
Ė‖n and magnetic Ḣ‖(z = 0) =

N∑
n=0

Ḣ‖n fields. Note that the number of the series

terms n simultaneously indicates the degree of small parameter εn = [μiδ/(
√

2λ)]n = [μi/(|p|λ)]n, for
estimating the value of which it is expedient to choose the minimum distance λ from external field
sources to the interface.

Comparison of the series terms (12) and (14) with the same number n shows that they are
interconnected by the following relation

an−1 (μi) Ė‖n = −an (μi) ςez × Ḣ‖n. (16)
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The first several expansion coefficients an in the power series of the function 1/w1 defined in Eq. (6)
have the values a−1 = −1, a0 = 1, a1 = −1, a2 = 1− 1/(2μ2

i ), . . .. Given these values for the first three
terms of the series, we obtain
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It can be seen that the Leontovich approximate impedance boundary condition [9] is valid up to
the first two terms of the asymptotic series. Starting from n = 2(ε2), the ratio changes. Nevertheless,
the relationship between the terms of the series for the tangent components of the field intensities at
the interface still exists. In this regard, it can be argued that expression (16) generalizes the impedance
boundary condition to wider domain of nonuniformity electromagnetic field diffusing into the conducting
body.

In the approximate impedance boundary condition, it is assumed that the normal field component
is equal to zero. As can be seen from Eq. (15), the requirement for fulfilling this assumption is more
stringent. It holds only for the zero term of the asymptotic series, and it is violated already at ε1.

4. CONCLUSION

In the case of a strong skin effect, explicit expressions are found for the electric and magnetic fields
as functions of the known field of the external sources. Unlike commonly used models, expressions,
in addition to the local value of vector fields, contain their derivatives with respect to the coordinate
perpendicular to the surface between dielectric and conducting media, thereby determining the effect
of field nonuniformity near the surface.

The expressions found in the asymptotic approximation generalize the Leontovich’s impedance
boundary condition to the case when an inhomogeneous electromagnetic field penetrates into the
conducting medium. The approximate ratio between the electric and magnetic field intensities is true
up to the terms containing the introduced small parameter in the first degree.

Further theoretical work involves the investigation of the reduction of nonuniform electromagnetic
field in conducting body and the effect of field nonuniformity at the interface. The development of the
theory is also possible in the direction of a more general description of nonuniform field of the sources
at the interface, not limited the sources in the form of current contours. The results obtained allow
their practical use for the formulation of boundary value problems taking into account nonuniform field
at the interface, which, as shown, can be considered known.
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