Vol. 95
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-25
Antenna Pattern Optimization via Clustered Arrays
By
Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020
Abstract
In this paper, two different architectures based on fully and partially clustered arrays are proposed to optimize the array patterns. In the fully clustered arrays, all the elements of the original array were divided into several equal subarrays, while in the partially clustered arrays, only the side elements were grouped into subarrays, and the central elements were left individually. The second architecture enjoys many advantages compared to the first one. The proposed clustered arrays use quantized amplitude distributions, thus, their corresponding patterns were associated with high side lobes. To overcome this problem, a constraint mask was included in the pattern optimization process. Simulation results show that the peak sidelobe level and the complexity of the feeding network in the partially clustered arrays can be reduced to more than -28 dB and 70.833% respectively, for a total of 48 array elements, number of individual central elements = 24, number of clusters on both sides of the array Q = 4, and number of elements in each side cluster M=6. Finally, the principles of the proposed clustered arrays were extended and applied to the two dimensional planar arrays.
Citation
Ahmed Jameel Abdulqader, Jafar Ramadhan Mohammed, and Raad H. Thaher, "Antenna Pattern Optimization via Clustered Arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.
doi:10.2528/PIERM20042307
References

1. Herd, J. S. and M. D. Conwey, "The evolution to modern phased array architectures," Proc. IEEE, Vol. 104, No. 3, 519-529, Mar. 2016.
doi:10.1109/JPROC.2015.2494879

2. Haupt, R. L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1207-1210, Apr. 2007.
doi:10.1109/TAP.2007.893406

3. Brockett, T. J. and Y. Rahmat-Samii, "Subarray design diagnostics for the suppression of undesirable grating lobes," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1373-1380, Mar. 2012.
doi:10.1109/TAP.2011.2180333

4. Zhao, X., Q. Yang, and Y. Zhang, "Synthesis of minimally subarrayed linear arrays via compressed sensing method," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 3, 487-491, Mar. 2019.
doi:10.1109/LAWP.2019.2894826

5. Mohammed, J. R., "Thinning a subset of selected elements for null steering using binary genetic algorithm," Progress In Electromagnetics Research M, Vol. 67, 147-157, Mar. 2018.
doi:10.2528/PIERM18021604

6. Abdulkader, A, J., J. R. Mohammed, and R. H. Thaher, "Phase-only nulling with limited number of controllable elements," Progress In Electromagnetics Research C, Vol. 99, 167-178, 2020.
doi:10.2528/PIERC20010203

7. Alvarez-Folgueiras, M., J. A. Rodrıguez-Gonzalez, and F. Ares-Pena, "High-performance uniformly excited linear and planar arrays based on linear semiarrays composed of subarrays with different uniform spacings," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 4002-4006, Dec. 2009.
doi:10.1109/TAP.2009.2026497

8. Yang, K., Y. Wang, and H. Tang, "A subarray design method for low sidelobe levels," Progress In Electromagnetics Research Letters, Vol. 89, 45-51, 2020.
doi:10.2528/PIERL19110301

9. Zhao, X., Q. Yang, and Y. Zhang, "Synthesis of subarrayed linear array via l1-norm minimization compressed sensing method," IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP 2018), 124-125, 2018.
doi:10.1109/APCAP.2018.8538246

10. Oliveri, G., M. Salucci, and A. Massa, "Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4277-4287, Oct. 2016.
doi:10.1109/TAP.2016.2595623

11. Manica, L., P. Rocca, and A. Massa, "Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1684-1691, Jun. 2009.
doi:10.1109/TAP.2009.2019914

12. Zhao, X., Q. Yang, and Y. Zhang, "Compressed sensing approach for pattern synthesis of maximally sparse non-uniform linear array," IET Microwav. Antennas Propag., Vol. 8, No. 5, 301-307, 2014.
doi:10.1049/iet-map.2013.0492

13. Rocca, P., G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies — A review," Proc. IEEE, Vol. 104, No. 3, 544-560, Mar. 2016.
doi:10.1109/JPROC.2015.2512389

14. Rocca, P., R. J. Mailloux, and G. Toso, "GA-based optimization of irregular subarray layouts for wideband phased arrays design," IEEE Antennas Wireless Propag. Lett., Vol. 14, 131-134, 2015.
doi:10.1109/LAWP.2014.2356855

15. Buchanan, K. R. and C. Flores-Molina, "Investigation of a novel subarray nullsteering technique for distributed random arrays," IEEE International Symposium on Antennas and Propagation (APSURSI), 1677-1678, 2016.
doi:10.1109/APS.2016.7696545

16. Taylor, T. T., "Design of circular apertures for narrow beam width and low sidelobes," IEEE Trans. Antennas Propag., Vol. 8, No. 1, 17-22, Jan. 1960.
doi:10.1109/TAP.1960.1144807