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Antenna Pattern Optimization via Clustered Arrays

Jafar R. Mohammed1, *, Ahmed J. Abdulqader1, 2, and Raad H. Thaher2

Abstract—In this paper, two different architectures based on fully and partially clustered arrays are
proposed to optimize the array patterns. In the fully clustered arrays, all the elements of the original
array were divided into several equal subarrays, while in the partially clustered arrays, only the side
elements were grouped into subarrays, and the central elements were left individually. The second
architecture enjoys many advantages compared to the first one. The proposed clustered arrays use
quantized amplitude distributions, thus, their corresponding patterns were associated with high side
lobes. To overcome this problem, a constraint mask was included in the pattern optimization process.
Simulation results show that the peak sidelobe level and the complexity of the feeding network in the
partially clustered arrays can be reduced to more than −28 dB and 70.833%, respectively, for a total of
48 array elements, number of individual central elements = 24, number of clusters on both sides of the
array Q = 4, and number of elements in each side cluster M = 6.

Finally, the principles of the proposed clustered arrays were extended and applied to the two
dimensional planar arrays.

1. INTRODUCTION

Modern communication systems such as massive MIMO in the fifth generation (5G) wireless
communication applications require a large number of array elements and consequently need a high
number of transmit/receive (T/R) modules which are known as high cost manufacturing devices. In
order to solve this problem, subarray architectures with fewer T/R modules have been proposed in
the literature [1, 2] for the purpose of simplifying the implementation cost and maintaining satisfactory
radiation characteristics. The general concept of subarrays involves the division of a large array of
elements N into small sub-groups each with M elements so that M � N , and then controlling the
weights of the sub-groups instead of each individual element in the large arrays [3].

Several methods have been proposed by researchers to jointly build efficient subarray architectures
and obtain the optimum values of the subarray weights. These methods can be divided into two groups;
the first group is based on the biological algorithms such as genetic algorithm and particle swarm
optimization [4–8], and the second group is based on the sparseness constraints such as compressed
sensing and the convex optimization [3, 9, 10].

Very recently, clustered-array architectures have also been suggested for the applications that
require high directivity. Such a type of arrays enjoys a very simple feeding network by grouping more
than one radiating elements into a single T/R module [11–13]. Thus, the amplitude excitations of
grouped elements will be quantized to a certain value. This leads to a significant deterioration in the
clustered array pattern. Also, the clustered arrays suffer from high quantization side lobes due to the
amplitude quantization of the element excitations. In [14, 15], aperiodic or polyomino-based clustering
strategies have been suggested to overcome the problem of quantization lobes.
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In this paper, the array patterns are optimized using both regular and irregular clustered arrays
architectures. In the regular clustered arrays, two or more elements are grouped into one subarray
meaning that all the elements of the linear array are divided into subarrays with equal number of
elements. This will be referred to as fully clustered array. By this way, the complexity of the feeding
network in terms of the required number of T/R modules is greatly reduced. Moreover, the effect of
the amplitude excitations errors which lead to the problem of high quantization lobes can be overcome
during the optimization process of the elements excitations. The high side lobes are eliminated by
incorporating a specific constraint mask in the array pattern optimization process which suppresses the
excess side lobe power outside the mask.

In the irregular clustered arrays, another innovative architecture is proposed, where only the side
elements of the array are divided into subarrays while the central elements of the original linear array
are left without clustering, i.e., they are fed individually. By this way, more degrees of freedom will be
available which contributes to better preservation of the constraint mask and eliminates the quantization
lobes. Besides, some desired nulls at pre-specified unwanted directions can also be included in the
optimization process. This architecture is able to provide excellent radiation characteristics with very
simplified feeding network. This will be referred to as partially clustered array.

2. THE PROPOSED CLUSTERED ARCHITECTURES

In this section, the fully and partially clustered array architectures are illustrated, and their practical
advantages are highlighted.

2.1. Fully Clustered Array

Consider a linear array antenna with even number of elements, N . The elements are assumed to be
symmetrically positioned and excited about the center of the array. This means that we have to deal
with only half of the array elements instead of all of them. Consequently, the complexity will also be
halved.

For fully clustered arrays, all the array elements, N , are divided into several subarrays, say Q, and
each subarray, q, contains M elements. Clearly, M is always less than N , and N should be chosen
such that the reminder of dividing N/M should be zero (i.e., Q should be integer). Figure 1 shows the
architecture of the proposed fully clustered array.

From this figure and for example N = 48 elements, it can be shown that each subarray may
contain any of the following number of elements, 2, 3, 4, 6, and 8. As the number of elements in the

Figure 1. Fully clustered array.
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subarray increases, the complexity of the feeding network decreases. As mentioned, this reduction in
the complexity comes at the cost of higher quantization side lobes in the clustered array pattern. To
formulate a proper constraint mask (or the cost function) of the optimization process, first let us write
the array factor of the clustered array shown in Figure 1 as:

AF (u) = 2
∑Q/2

q=1
Aq

∑N/2

n=1
δcnqwn cos

{
(2n − 1)

2
kdu

}
(1)

where δcnq is the delta function which is equal to 1 for cn = q (i.e., the nth element belongs to the qth
cluster) and 0 for cn �= q. Aq is the amplitude weighting of each clustered output; wn is the complex
excitations of each individual element in the original linear array which is equal to wn = anejpn where
an and pn represent the amplitude and phase excitations of the nth element, respectively, k = 2π/λ
where λ is the wavelength in the free space, u = sin(θ) where θ is the direction of the angle of the main
lobe around the axis of the array; d is the separation distance between any two successive elements in
the regular linear array. From Eq. (1), it can also be noted that the subarrays on each side of the array
are considered to be symmetrically weighted. Thus, we have considered only the half values of Q. For
amplitude-only weighting, i.e., pn = 0, Equation (1) can be normalized and further simplified to

AF (u) =
∑Q/2

q=1
Aq

∑N/2

n=1
δcnqan cos

{
(2n − 1)

2
kdu

}
(2)

In order to find the values of the amplitude weighting at the subarray level, Aq, first the amplitude
excitations at the element level, an, are optimized to obtain the desired array pattern with controlled
sidelobes and a given beam width. Then, the value of each clustered weight Aq is computed by taking
the mean value of the optimized element excitations a1, am, . . . , aM that belong to qth cluster. As
a result, the amplitude excitations of the array elements a1, am, . . . , aM located within each subarray
will be quantized to a new value equal to Aq. Consequently, the side lobe pattern of the individually
optimized array elements may change. To maintain the side lobe level of the clustered array pattern
within the particular mask limit, we add an extra condition on the cost function which is defined as
the excess sidelobe power outside the constraint mask. The lower the cost is, the better the solution
is. For a given radiation pattern, each pattern point that lies outside the constraint mask contributes a
value to the cost function equal to the power difference between the clustered array pattern due to the
subarray and the desired pattern due to the regular linear array. Finally, the inputs to the cost function
include an initial set of an, the desired array pattern, and the constraint mask. Numerically, this cost
function can be written as

cost =
∑

| AF (u) − Mask limit |2 (3)

Figure 2 shows the results of applying the fully clustered array for N = 48 elements, M = 3, number of
subarrays, Q = 8, and the constraint mask is chosen to be at −30 dB. Figure 3 shows the results of the
clustered array under additional constraint of placing a wide null centered at 46◦. It can be seen that
the obtained results confirm the presented analysis. Also, the peak sidelobe level of the clustered array
pattern does not exceed the constrained mask limit. More important, the complexity of the feeding
network in the clustered array was found less than 16.6% compared to that of the regular symmetrically
excited linear array, 50%.

2.2. Partially Clustered Array

Another new and innovative architecture is presented in this subsection where the side elements on both
sides of the linear array are grouped into a number of subarrays followed by the weighting parameters
Aq as shown in Figure 4. The central elements are connected and weighted individually. Then the
overall array architecture becomes hybrid which has many advantages compared to the previous one.
The major advantage of this architecture is its ability to provide more degrees of freedom than that of
the fully clustered array. This, of course, relaxes the constraint mask of the clustered array pattern. In
other words, the limit of the constraint mask can be lowered more than that of the fully clustered array
which is very desirable in many applications.
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Figure 2. (a) Fully clustered array pattern for N = 48, and M = 3, and (b) its corresponding amplitude
distribution.
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Figure 3. (a) Fully clustered array pattern with wide null for N = 48 and M = 3, and (b) it’s
corresponding amplitude distribution.

For this architecture, Eq. (2) can be rewritten as follows:

AF (u) = 2
∑L/2

n=1
bn cos

(
(2n − 1)

2
kdu

)
︸ ︷︷ ︸

L
2
Indivitually feeding elements

+ 2
∑Q/2

q=1
Aq

∑N/2

n=
(N−L)+1

2

δCnqan cos
(

(2n − 1)
2

kdu

)
︸ ︷︷ ︸

Q/2 Subarrays on each side of the array

(4)

where bn represents the optimized amplitudes of the individually feeding elements at the center of the
array. Figures 5 and 6 show the results of the partially clustered array for N = 48. The number of
the individually (or centrally) feeding elements was chosen to be L = 18, M = 3; the number of the
subarrays on both sides of the array is Q = 10; and the constraint mask limit was chosen to be −30 dB
as before. Again, these two figures confirm the effectiveness of the proposed partially clustered array.
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Figure 4. Partially clustered array.
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Figure 5. (a) Partially clustered array pattern for N = 48, M = 3, and L = 18, and (b) it’s
corresponding amplitude distribution.

3. SIMULATION RESULTS

To illustrate the effectiveness of both described architectures (fully and partially clustered arrays),
several scenarios were examined for each considered array configuration. In all scenarios, the genetic
algorithm has been used as the optimization process with the following specifications: the number of
population is 20; tge rate of mutation is 0.15; and a single point crossover is used. Also, the amplitude-
only weighting control is used. This means that the excitation phases of the array elements are set to
0. The total number of the array elements was chosen to be 48 (i.e., 24 elements on each side of the
array with amplitude excitations being symmetric on both sides of the array). The number of the array
elements in each subarray is ranged from M = 1, 2, . . . , 8, where M = 1 corresponds to the regularly
linear array without subarrays. The performances of both arrays in terms of peak side lobe level (PSLL),
directivity, half power beam width (HPBW), and the percentage complexity of the feeding network as
a functions of the number of elements in each subarray, M , are depicted in Figures 7, 8, 9, and 10,
respectively. Numerical values of these performance measurements are also shown in Tables 1 and 2.

The complexity percentage of the fully clustered array (FCA) may be defined by the ratio of the
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Figure 6. (a) Partially clustered array pattern with wide null for N = 48, M = 3, L = 18, and (b) it’s
corresponding amplitude distribution.

Table 1. Performance of the fully clustered array.

N = 24
on each side

of array

M 1 2 3 4 6 8
PSLL (dB) 31.3 31.1 30.4 29 27 24

Complexity % 50 25 16.6 12.5 8.33 6.25
Directivity (dB) 14.13 14.11 14.0 14.24 14.34 14.4
HPBW (deg.) 2.69 2.7 2.72 2.63 2.62 2.53

Table 2. Performance of the partially clustered array.

N = 24
on each side of

the array

M 1 2 3 4 5 6
PSLL (dB) 31.3 30.8 30.3 30.05 29.5 28

Complexity % 50 39.58 33.33 25 25 29.167
Directivity (dB) 14.13 14.07 14.1 14.17 14.24 14.33
HPBW (deg.) 2.75 2.76 2.755 2.74 2.7 2.68

number of the clusters to the total number of elements:

complexity of the FCA =
Q

2N
∗ 100% (5)

whereas for partially clustered array (PCA) it is defined as

complexity of fully clustered =
No. of Individual Elements + Q

2N
∗ 100% (6)

From Figure 7, it can be observed that as the number of elements in the subarray increases, the PSLL
will also rise. However, this effect becomes worse with the fully clustered array. From Figures 8 and 9, it
is noticed that the directivity and HPBW change slightly with varying M . As expected, the complexity
was inversely proportional to the value of M .
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Figure 7. The peak SLL versus M .
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Figure 8. The directivity versus M .
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Figure 9. The HPBW versus M .
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Also, from Figure 10 it can be seen that there are slight changes in the required feeding network
complexities of both clustered arrays. Again, this is an extra advantage for the partially clustered
array. In the next scenario, the performance of the partially clustered array compared to that of the
fully clustered array under large values of quantized parameter, M , is investigated. For both arrays, the
total number of elements was N = 48, and the constraint limit was set to −30 dB. For a fully clustered
array, the value of M was set to 6 (i.e., there are 4 subarrays on each side of the array). Thus, the
total number of degrees of freedom in such a case was 8. For a partially clustered array, the value of
M was also set to 6, two equal subarrays on each side of the array, and the number of the individually
feeding elements was set to L = 24. In this case, the total number of the degrees of freedom was 28.
Clearly, the partially clustered array pattern enjoys more relaxations on the constraint mask due to
availability of higher number of degrees of freedom. This is evident from Figure 11, where the peak SLL
in the partially clustered array pattern was −33 dB which is within the constraint limit, while the peak
SLL value in the fully clustered array pattern was about −25 dB which is above the limit. Figure 11
also shows the cost function variations of the fully and partially clustered arrays versus the number of
iterations. Moreover, the complexities of the fully and partially clustered arrays are calculated for the
above two cases, and they are found to be 12.5% and 33.33%, respectively.

Next, the proposed idea was compared to the method t presented in [11]. The results are shown
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Figure 11. Comparisons between fully and partially clustered arrays.
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Figure 12. Comparisons between partially clustered array and the methods of [11].
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Figure 13. (a) Taylor array pattern, and (b) its distribution.
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Figure 14. Results of applying the fully clustered array.
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Figure 15. Results of applying the partially clustered array.

Figure 16. Results of the clustered planar array with N × N = 30 × 30 elements.
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in Figure 12. In addition, the proposed idea was applied to the Taylor excited array [16], and the
results are shown in Figures 14 and 15. For comparison, the original Taylor distribution along with its
corresponding array pattern is also shown in Figure 13.

Finally, the idea was extended to the planar two-dimensional array with size 30×30, and the results
are shown in Figure 16. The number of the array elements in each subarray is chosen to be 2 × 2. As
can be seen from the three-dimensional array pattern, satisfactory radiation characteristics have been
met. Thus, the proposed idea can be successfully applied to the large arrays such as massive MIMO
arrays.

4. CONCLUSIONS

It is evident from current investigation that the desired radiation patterns can be obtained from both
fully and partially clustered arrays providing efficient constraint mask. Consequences of using such
clustered arrays were a great reduction in the complexity and cost of the array feeding network. Also,
the proposed clustered array reduces the effects of the quantization amplitudes due to the unavoidable
use of the available digital attenuators in practice.

Moreover, the proposed idea was extended and applied to the two dimensional planar arrays where
the elements of each small subarray can be designed as tiles. Then, the array pattern was optimized
subject to the optimal clustering configurations.
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