Vol. 91
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-05-25
Modeling Thin Graphene Sheets in the WLP-FDTD Algorithm with Surface Boundary Condition
By
Progress In Electromagnetics Research Letters, Vol. 91, 93-98, 2020
Abstract
In this article, a two-dimensional (2D) unconditionally stable finite-difference time-domain (FDTD) approach is proposed for graphene electromagnetic (EM) device simulation. The weighted Laguerre polynomials (WLPs) are utilized to resolve stability concerns, and graphene is modelled as a thin conductive layer incorporating the surface boundary condition (SBC) in WLP-FDTD scheme. The transmittance of EM signal propagating through two graphene layers is calculated for 0-10 THz to verify the effectiveness of the proposed method. The simulation results agree excellently with the results calculated from the analytical and other numerical models. The proposed SBC-WLP-FDTD method provides an alternative numerical approach to simulate graphene-like materials with improved computing efficiency.
Citation
Wei-Jun Chen, Qi-Wen Liang, Shi-Yu Long, and Min Zhao, "Modeling Thin Graphene Sheets in the WLP-FDTD Algorithm with Surface Boundary Condition," Progress In Electromagnetics Research Letters, Vol. 91, 93-98, 2020.
doi:10.2528/PIERL20041503
References

1. Lin, H., M. F. Pantoja, L. D. Angulo, et al. "FDTD modeling of graphene devices using complex conjugate dispersion material model," IEEE Microw. Wireless Componen. Lett., Vol. 22, No. 12, 612-614, Dec. 2012.
doi:10.1109/LMWC.2012.2227466

2. Yu, X. and C. D. Sarris, "A perfectly matched layer for subcell FDTD and applications to the modeling of graphene structures," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1080-1083, 2012.

3. Ahmed, I., E. H. Khoo, and E. Li, "Efficient modeling and simulation of graphene devices with the LOD-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 6, 306-308, Jun. 2013.
doi:10.1109/LMWC.2013.2258463

4. De Oliveira, R. M. S., N. R. N. M. Rodrigues, and V. Dmitriev, "FDTD formulation for graphene modeling based on piecewise linear recursive convolution and thin material sheets techniques," IEEE Antennas Wireless Propag. Lett., Vol. 14, 767-770, 2015.
doi:10.1109/LAWP.2014.2378174

5. Chen, W.-J., W. Shao, J. Quan, and S.-Y. Long, "Modeling of wave propagation in thin graphene sheets with WLP-FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 6, 780-787, Apr. 2016.
doi:10.1080/09205071.2016.1150210

6. Chen, W.-J. and S.-Y. Long, "Modeling of wave propagation in thin graphene sheets with 2-D ADE-WLP-FDTD method," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 434-436, Jun. 2016.
doi:10.1109/ICMMT.2016.7761799

7. Zhu, Q.-Y. and W.-J. Chen, "Modeling thin grapheme sheets with efficient 2-D WLP-FDTD method," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Vol. 1, Oct. 2017.

8. Nayyeri, V., M. Soleimani, and O. M. Ramahi, "Modeling graphene in the finite-difference time-domain method using a surface boundary condition," IEEE Trans. Antennas Propaga., Vol. 61, No. 8, 4176-4182, Aug. 2013.
doi:10.1109/TAP.2013.2260517

9. Hanson, G. W., "Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, Mar. 2008.
doi:10.1063/1.2891452

10. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 697-704, Mar. 2003.
doi:10.1109/TMTT.2003.808732

11. Chen, W.-J., W. Shao, J.-L. Li, and B.-Z. Wang, "Numerical dispersion analysis and key parameter selection in Laguerre-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 12, 629-631, Dec. 2013.
doi:10.1109/LMWC.2013.2283866