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Modeling Thin Graphene Sheets in the WLP-FDTD Algorithm
with Surface Boundary Condition
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Abstract—In this article, a two-dimensional (2D) unconditionally stable finite-difference time-domain
(FDTD) approach is proposed for graphene electromagnetic (EM) device simulation. The weighted
Laguerre polynomials (WLPs) are utilized to resolve stability concerns, and graphene is modelled as
a thin conductive layer incorporating the surface boundary condition (SBC) in WLP-FDTD scheme.
The transmittance of EM signal propagating through two graphene layers is calculated for 0–10 THz
to verify the effectiveness of the proposed method. The simulation results agree excellently with the
results calculated from the analytical and other numerical models. The proposed SBC-WLP-FDTD
method provides an alternative numerical approach to simulate graphene-like materials with improved
computing efficiency.

1. INTRODUCTION

The finite-difference time-domain (FDTD) algorithm has been proved to be an effective approach for
graphene-based EM device simulations in the past few years [1–4]. However, the numerical modeling
of these devices remains challenging due to the single-atom thickness of graphene. According to the
Courant-Friedrich-Levy (CFL) stability constraint, traditional FDTD method has to utilize extra fine
meshing and ultra-small time step in order to model the atomic-thick graphene. Hence, these FDTD
approaches unavoidably consume large memory and computing time. To reduce the memory usage
and improve computing efficiency, a hybrid algorithm known as the auxiliary differential equation
weighted Laguerre polynomials (ADE-WLP) FDTD, has been proposed [5, 6]. Although it does show
the advantages in memory usage and computing efficiency, a fine grid division has to be applied to the
graphene layer in this method, resulting in a time-consuming sparse matrix equation. To solve this issue,
the factorization splitting technique is introduced in [7], demonstrating excellent reduction in computing
time. Alternatively, Nayyeri et al. proposed an FDTD method in which graphene sheet is modelled as a
conductive layer, and surface boundary condition (SBC) is utilized to avoid the implementation of fine
meshing [8]. However, these approaches are limited by the CFL stability constraint.

Therefore, in this article an unconditionally stable numerical approach, utilizing WLP and
conductive SBC (i.e., SBC-WLP-FDTD), is presented to model graphene-based devices. The update
equation of a 2D case is derived, and the transmission coefficient of EM wave propagation through
graphene is calculated for 0–10 THz. The simulation results are validated with the results achieved with
the analytical model and a few conventional FDTD methods. A detailed computation effort comparison
between the numerical approaches is also presented.
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2. MATHEMATICAL FORMULATION

In this section, the detailed derivation procedure of the update equations of the proposed FDTD method
is presented for a 2D case. Fig. 1 demonstrates the unit cell of a Cartesian computational grid, where
graphene is represented as a conductive layer at the spatial grid I + 1/2. The magnetic field Hz and
electric fields Ex, Ey on both sides of the graphene sheet are also shown in the picture.

Figure 1. Yee cell including graphene layer of the 2-D WLP-FDTD model.

The updating equations for Ex, Ey, and Hz can be derived by implementing ∂B/∂t = −∇× E at
(I + 0.5, j) [8]:
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where μ1 and μ2 are the permeability of materials sandwiching the graphene sheet, and δc, δb, and δf

are defined as [8]
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As 1Ex and 1Ey can be written as
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where ε0 is the dielectric permittivity of free space, applying the frequency domain boundary condition
at the graphene surface, we arrive at

2Hz(ω) − 1Hz(ω) = σs(ω)MEy(ω) (8)

where σs is the surface conductivity of graphene, and MEy is the electric field at (I +1/2). According to
Kubo’s formula [9], the conductivity of graphene is composed of both intraband and interband terms.
For frequency below 10 THz, the intraband term dominates, and σs can be expressed as
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where e is the charge of an electron, T the temperature, � the reduced Plank’s constant, Γ the scattering
rate, kB the Boltzmann constant, and μc the chemical potential [9]. Substituting Eq. (9) into Eq. (8)
and applying the frequency to time domain transform (i.e., jω → ∂/∂t) yields
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where τ = 1/(2Γ) is the scattering time, and σ0 = (e2τkBT/π�
2)(μc/kBT + 2 ln(e−µc/kBT + 1)). By

using the weighted Laguerre basis functions φp(st), the field components can be rewritten as [10]
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where p is the order of Laguerre functions, and s is the time-scale factor. The derivative of any field
U(x, y, t) in Eqs. (1), (2), (6), (7), and (10) with respect to t is
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Inserting Eqs. (11) and (12) into Eqs. (1), (2), (6), (7), and (10), multiplying both sides by φp(st),
and integrating over st ∈ [0,∞), we have
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Here, Δx and Δy are the edge lengths of the grid in x and y directions, respectively, and a = Δysε.
Inserting Eqs. (13) and (14) into Eqs. (15)–(17), we have(
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As long as the updating Equations (18)–(20) are derived at the graphene sheet, the classical matrix
system for WLP-FDTD method can be revised. Thus, the electric fields can be achieved by solving
Equations (18)–(20). With Eqs. (13) and (14), the magnetic fields on both sides of the graphene sheet
can be calculated explicitly.

3. NUMERICAL RESULTS

In order to validate the effectiveness of the proposed FDTD model, we simulate the EM wave propagation
through two graphene layers, and the transmission coefficients are calculated with respected to the TEz

mode. A sinusoidally modulated Gaussian pulse Jy(t) = exp[−(t − Tc)2/T 2
d ] sin[2πfc(t − Tc)] is used

as an incident signal, where Td = 1/(2fc), Tc = 3/(2fc), and fc = 5THz. A finite time interval (Tf )
of 2 × 10−12 s as well as a time scaling factor (s) of 3.7699 × 1014 is also used in the simulation. The
order-marching step number (N) used in the FDTD calculation is 148 [11]. As shown in Fig. 2, the
plane wave with linear polarization in the direction of y-axis is applied perpendicularly to the surface
of graphene. An air gap with the thickness of 10 nm is induced between the graphene layers. The
dimension of the model is 400 ∗ d × 20 ∗ d where d = 1500 nm, and perfect matched layers (PMLs) as
absorbing boundary conditions (ABCs) are used to truncate the computational area. The conductivity
of graphene is calculated with chemical potential μc = 0.5 eV at room temperature (i.e., T = 300 K)
with a scattering time of τ = 0.5 × 10−12 s.
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Figure 2. Schematic of EM wave propagation through two graphene sheets.
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The ADE-FDTD, SBC-FDTD, ADE-WLP-FDTD and analytical method are also used for
comparison with the proposed approach (i.e., SBC-WLP-FDTD). The ultrathin thickness of graphene
results in a cell size as small as Δx = 1nm and Δy = 1500 nm near the graphene layers for ADE-
FDTD and ADE-WLP-FDTD. The grid size Δx increases gradually in the direction of x-axis while Δy
remains constant and arrives at a maximum of Δx = 1500 nm. The analytical solution is calculated
as T = 1/(1 + η0σs), where η is the free space impedance [9]. Fig. 3 illustrates the calculated results
for all methods. All the curves overlap well with each other, indicating the validation of the proposed
approach. Table 1 illustrates the summarized details of the numerical methods. The proposed FDTD
model exhibits better computation efficiency than the other FDTD methods. The simulation results
are achieved on PC with Intel i5-421M and 8G RAM.
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Figure 3. Transmission coefficient calculated with analytical and various numerical models.

Table 1. Comparisons of numerical approaches.

Method Δt (fs) Grid cells Marching steps Computing time (s)
ADE-FDTD 1.67 × 10−3 482 × 20 9 × 105 15970

ADE-WLP-FDTD 2.5 482 × 20 148 34
SBC-FDTD 1.67 × 10−2 400 × 20 9 × 104 411
This work 2.5 400 × 20 148 16

4. CONCLUSION

In summary, this work implements graphene as a conductive sheet with the implicit SBC-WLP-FDTD
method to simulate graphene-based EM devices. The 2D updating equation has been derived to simulate
EM wave propagation in the graphene, and simulation results have been validated against analytical
calculation and three other numerical methods. As the proposed method does not require fine meshing, it
demonstrates the best computing efficiency among all the numerical approaches while retains excellent
computing accuracy. It provides an alternative approach for numerical device simulation involving
graphene-like 2D materials with improved time efficiency.
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